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1 Introduction

Where the second part of econ202A fits?

• Change in focus: the first part of the course focused on the big picture: long run growth,
what drives improvements in standards of living.

• This part of the course looks more closely at pieces of models. We will focus on four
pieces:

– consumption-saving. Large part of national output.
– investment. Most volatile part of national output.
– open economy. Difference between S and I is the current account.
– financial markets (and crises). Because we learned the hard way that it matters a

lot!

2 Consumption under Certainty

2.1 A Canonical Model

A Canonical Model of Consumption under Certainty

• A household (of size 1!) lives T periods (from t = 0 to t = T − 1). Lifetime
preferences defined over consumption sequences {ct}Tt=1:

U =

T−1∑
t=0

βtu(ct) (1)

where 0 < β < 1 is the discount factor, ct is the household’s consumption in period
t and u(c) measures the utility the household derives from consuming ct in period t.
u(c) satisfies the ‘usual’ conditions:

– u′(c) > 0,
– u′′(c) < 0,
– limc→0 u

′(c) =∞
– limc→∞ u

′(c) = 0

• Seems like a reasonable problem to analyze.
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2.2 Questioning the Assumptions

Yet, this representation of preferences embeds a number of assumptions. Some of these
assumptions have some micro-foundations, but to be honest, the main advantage of this
representation is its convenience and tractability. So let’s start by reviewing the assumptions:

• Uncertainty. In particular, there is uncertainty about what T is. Whose T are we
talking about anyway? What about children? This is probably not a fundamental
assumption. We will introduce uncertainty later. This is not essential for now.

• Aggregation. Aggregate consumption expenditures represent expenditures on many
different goods: ct =

∑
i pi,tci,t over commodities i (where I am assuming that

aggregate consumption is the numeraire). If preferences are homothetic over individual
commodities, then it is possible to ‘aggregate’ preferences of the form u(c,p) into an
expression of the form u(c) where c = p.c

• Separation. Other arguments enter utility: labor supply etc... The implicit assumption
here is that preferences are separable over these different arguments: u(c) + v(z).

• Time additivity. The marginal utility of consumption at time t only depends on
consumption expenditures at that time.

– What about durable goods, i.e. goods that provide utility over many periods?
Distinction between consumption expenditures (what we pay when we purchase
the goods) and consumption services (the usage flow of the good in a given
period). The preferences are defined over consumption services but the budget
constraint records consumption expenditures. Stock-flow distinction.

– What if utility depends on previous consumption decisions, e.g. u(ct, Ht) where
Ht is a habit level acquired through past consumption decisions? Habit for-
mation would correspond to a situation where ∂Ht/∂cs > 0 for s < t and
∂2u/(∂c∂H) > 0. In words: past consumption increases my habit, and a higher
habit increases my marginal utility of consumption today. Internal habit.

– What if utility depends on the consumption of others, e.g. u(ct, C̄t) where
C̄t is the aggregate consumption of ‘others’ (catching up with the Joneses).
External habit. As the name suggests, external habit implies an externality of my
consumption on other people’s utility that may require corrective taxation).

• Intertemporal Marginal Rate of Substitution. Consider two consecutive periods t
and t+1. The IMRS between t and t+1 seen from period 1 is βt+1u′(ct+1)/β

tu′(ct).
The same IMRS seen from time t is βu′(ct+1)/u

′(ct). The two are equal! Key property
that arises from exponential discounting (Strotz (1957)). Example: 1 apple now, vs 2
apples in two weeks. Answer should not change with the time at which we consider
the choice (period 1 or period t). Substantial body of experimental evidence suggests
that the present is more salient then exponential discounting.
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Suppose instead that U = u(c0) + θ
∑T−1

t=1 β
tu(ct) with 0 < θ < 1 represent the

lifetime preferences of the household in period 1. Notice that θ only applies to future
utility (salience of the present). quasi-hyperbolic discounting (see Laibson (1996)).

The problem is that preferences become time-inconsistent: next period, the household
would like to re-optimize if given a chance. Not the case with exponential discounting
(check this):

maxct,ct+1,...cT−1

t−1∑
s=1

βsu(c∗s) +
T−1∑
s=t

βsu(cs)

2.3 The Intertemporal Budget Constraint

Since there is no uncertainty, all financial assets should pay the same return (can you explain
why?). Let’s denote R = 1 + r the gross real interest rate between any two periods, assumed
constant. The budget constraint of the agent is:

at+1 = R(at + yt − ct)

at denotes the financial assets held at the beginning of the period, and yt is the non-financial
income of the household during period t. [Note that this way of writing the budget constraint
assumes that interest is earned ‘overnight’ i.e. as we transition from period t to t+ 1.]
We can derive the intertemporal budget constraint of the household by solving forward for at
and substituting repeatedly to get:

a0 = R−1a1 − y0 + c0 = ... =
T−1∑
t=0

R−t(ct − yt) +R−TaT

Since the household cannot die in debt T , we know that aT ≥ 0 and the intertemporal budget
constraint becomes:

T−1∑
t=0

R−tct ≤ a0 +
T−1∑
t=0

R−tyt

T−1∑
t=0

R−tct ≤ a0 +

T−1∑
t=0

R−tyt (2)

Interpretation:

• the present value of consumption equals initial financial wealth (a1) + present value of
human wealth (

∑T−1
t=0 R

−tyt).

• the term on the right hand side is the economically relevant measure of total wealth:
financial + non-financial.

• the combination of time-additive preferences and an additive intertemporal budget
constraint is what makes the problem so tractable (Ghez & Becker (1975))
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2.4 Optimal Consumption-Saving under Certainty

Optimal Consumption-Saving under Certainty.
The problem of the household is to maximize (1) subject to (2):

max
{ct}T−1

t=0

T−1∑
t=0

βtu(ct)

s.t.
T−1∑
t=0

R−tct ≤ a0 +
T−1∑
t=0

R−tyt

We can solve this problem by setting-up the Lagrangian (where λ > 0 is the Lagrange
multiplier on the intertemporal constraint):

L =

T−1∑
t=0

βtu(ct) + λ

(
a0 +

T−1∑
t=0

R−tyt −
T−1∑
t=0

R−tct

)

The first order condition for ct is:

u′(ct) = (βR)−t λ

[Note: from this you should be able to infer that the IBC will hold with equality). Can you
see why?]

Interpretation:
u′(ct) = (βR)−t λ

• β captures impatience, i.e. the preference for the present. Makes us want to consume
now.

• R determines the return on saving. A higher R makes us want to consume later (is
that really the case? More later....)

• Marginal utility will be decreasing over time if βR > 1 and increasing otherwise.

• Since marginal utility decreases with consumption, this implies that consumption will
be increasing over time when βR > 1 and decrease otherwise.

• When βR = 1 the two forces balance each other out and consumption becomes flat.

• Note that this gives us some key information on the slope of the consumption profile
over time, but not on the consumption level.
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2.5 A Special Case: βR = 1

u′(ct) = λ

This implies that consumption is constant over time: ct = c̄. Substitute this into the intertem-
poral budget constraint to obtain:

T−1∑
t=0

R−tc̄ =
1−R−T

1−R−1
c̄ =

1− βT

1− β
c̄ = a0 +

T−1∑
t=0

R−tyt

from which we obtain:

c̄ =
1− β

1− βT

(
a0 +

T−1∑
t=0

R−tyt

)
Observe:

• consumption is a function of total wealth.

• the marginal propensity to consume is (1− β)/(1− βT ) and converges to 1− β when
the horizon extends (T →∞).

• if β = 0.96 (a reasonable estimate), this givesR = 1/0.96 = 1.0416. Then we should
consume about 4% of total wealth every period.

2.6 The Permanent Income Hypothesis

Friedman’s (1957) Permanent Income.

c̄ =
1− β

1− βT

(
a0 +

T−1∑
t=0

R−tyt

)

• This is Friedman’s permanent income hypothesis. Individual consumption is not
determined by income in that period, but by lifetime resources, unlike Keynesian
consumption functions of the form ct = a+ byt.

• Friedman actually defines permanent income as the right hand side of this equation.
This is the annuity value of total resources.

• This implies that consumption should not respond much to transitory changes in
income, since these will not affect much permanent income, but should respond if
there are changes in your permanent income.

– you earn an extra $200 today
– you just got tenured and learn that starting next year, your income will double.
– you learn that you won $10m at the state lottery
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2.7 Understanding Estimated Consumption Functions

Keynes (1936) argues that ‘aggregate consumption mainly depends on the amount of aggre-
gate income,’ ‘is a stable function,’ and ‘increases less than proportionately with income.’

In other words, Keynes argues for a consumption function of the type ct = a+ byt.

Empirically, it matters whether we look (a) in the cross section or (b) in the time series.
This looks quite different from Friedman’s permanent income which we can write as

ct = ypt where yPt is simply permanent income.

Yet, Friedman’s PIH can account for the empirical observations. Observe that we can
write yt = yPt + yTt where yTt is the transitory component of income. An OLS regression of
consumption on income yields:

b̂ =
cov(ct, yt)

var(yt)
=

cov(yPt , yt)

var(yt)
=

var(yPt )

var(yt)
< 1

â = E(ct)− b̂E(yt) = (1− b̂)E(yPt )

0

45◦

yi,t

ci,t

in the cross section

whites

blacks

0

45◦

yt

ct

in the time series

Figure 1: Keynesian consumption functions and the PIH

• In the cross section: more variations from yTi,t: lower b̂.

• in the time series, more variation from yPt : higher b̂

• in the cross section: lower intercept â if lower E(yPt )
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2.8 The LifeCycle Model under certainty

Modigliani and Brumberg (1954) consider the lifecycle implications of the previous model.
Suppose that people live T periods (from 1 to T ) and that β = R = 1. (Note: this is a
stronger assumption than βR = 1)

The PIH model tells us that consumption is constant and equal to the permanent income
of the agent: c = c̄ = yP .

This is irrespective of the income profile {yt} over time. Suppose now that the agent
works for N < T periods, earning income y, then retires.

The household saves y − c̄ when working, then dissaves −c̄ when retired.

N timeT

c̄

y

N T time

wealth

human wealth

total wealth

Figure 2: The Baseline Life-Cycle Model

Equations for the simple Modigliani-Brumberg (1954) lifecycle model:

c̄ =
N

T
y

at = t
T −N
T

y for t ≤ N

at =
N

T
(T − t)y for N ≤ t ≤ T

ht = (N − t)y human wealth

wt = at + ht =
N

T
(T − t)y for all t ≤ T
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Assume there is no growth. Then, we have the following (aggregating across cohorts):

w̄ =
N

2T
y(T + 1)

h̄ =
N

2T
y(N + 1) ; ā =

N

2T
y(T −N)

Note:

• The household runs total wealth to 0

• Human wealth runs out at t = N . It is supplemented by financial wealth

• We can have positive financial wealth even if there is no bequest motive.

• The ratio of human to financial wealth h̄/ā does not depend on income y (it is equal
to (N + 1)/(T −N).

• The details of the social security system matter. This describes a fully funded system
(or even more precisely, what should happen if there is NO social security system and
no bequest motive). What if we have a society where the young take care of the old
(China); or an unfunded system where the government taxes the young to support the
old? What happens to

– consumption profiles?
– income?
– private saving?

2.9 Saving and Growth in the LifeCycle Model

How does growth affect saving in the lifecycle model?

• Start with zero growth: the age-profile = cross-section. Aggregate wealth is constant
and aggregate saving equals 0. The young save, and the old dissave

• population growth: more young saving, so saving increases with population growth.

• productivity growth: more complex and depends on how productivity growth affects
each cohort’s income:

– If productivity growth is across cohorts (i.e. each cohort’s income is constant but
younger cohorts have a higher income profile) then productivity growth increases
saving. (Why? b/c the young save more than the old dissave)

– but instead if productivity growth increases income over a worker’s lifetime, then
young workers may decide to borrow against higher future income in middle age.
In that case, faster growth can reduce savings.
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N timeT

c̄

Figure 3: The Life-Cycle Model when Income grows over time

2.10 Interest Rate Elasticity of Saving

The response of consumption and savings to changes in interest rates is an important question.
Think about:

• the transmission of monetary policy (changing the real interest rate)

• changes to the tax code that affects rates of returns on savings. you have seen in the
first part of this course how changes in savings can affect growth rates temporarily (if
growth is exogenous) and potentially permanently (if growth is endogenous)

Consider the first-order condition again:

u′(ct) = (βR)−t λ

Rewrite it in two consecutive periods and eliminate λ. This is the Euler equation under
certainty:

u′(ct) = (βR)u′(ct+1)

Consider CRRA preferences: u(c) = c1−θ/(1− θ). [We have already seen these preferences
when solving the Ramsey-Cass-Koopmans problem: θ represents both the CRRA coefficient
and the inverse of the (IES).]

Substitute to get:
ct+1/ct = (βR)1/θ

• if 1/θ = 0 (Leontieff) then ct is flat regardless of the interest rate. No substitutability

• for 1/θ < 1: weak substitution effects

• for θ = 1 income and substitution effects cancel out (log preferences)
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• for 1/θ > 1: strong substitution effects

• if 1/θ → ∞ then ct becomes very responsive to the interest rate. In the limit, con-
sumption growth becomes so responsive that the interest rateR will have to stay ‘close’
to 1/β to ensure that consumption growth does not become too extreme.

ct+1/ct = (βR)1/θ

In general, consumption growth should be responsive to changes in the interest rate. On can
rewrite:

d ln(ct+1/ct) = (1/θ)d lnR = (1/θ)d ln(1 + r) ≈ (1/θ)dr

An increase in the real interest rate by 100bp should increase consumption growth by 1/θ%.

But the analysis is incomplete: we need to figure out by how much consumption itself
changes.

What about the overall effect?
To simplify things, let’s consider first a two-period problem (with a0 = 0)

c1/c0 = (βR)1/θ

c0 +
c1
R

= y0 +
y1
R

Let’s start with a simple case where y1 = 0:
We have:

• a substitution effect. Keeping the utility level constant, the change in interest rate leads
us to substitute consumption today for consumption tomorrow: c0 falls, c1 increases.

• an income effect: the budget line rotates around (y0, 0). This means more consumption
can be afforded in each period. This increases c0 and c1.

The effect on c1 is unambiguous. The effect on c0 is ambiguous. When 1/θ > 1 the
substitution effect dominates so that c0 falls.

Mathematically:
c0(1 + (βR)1/θ/R) = y0

2.10.1 The 2-period case with y1 = 0

Now, let’s consider what happens when y1 6= 0

• the budget curve rotates around (y0, y1).

• in addition to the income and substitution effects, there is a wealth effect: future income
is worth less to the household. This reduces c0 and c1.
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y0

A
c1

c0

B

C

Figure 4: An increase in interest rates when y1 = 0

• the net effect often depends on whether the household is a net borrower or lender.

– if c0 = y0 and c1 = y1 then there is no income and wealth effect (why? because
the initial consumption bundle remains on the new budget line). So there is only
a substitution effect and c0 falls.

– if the household is initially a saver (i.e. c0 < y0) then the income effect dominates
the wealth effect and the overall effect on c0 is indeterminate

– if the household is initially a borrower (c0 > y0) then the income effect is weaker
than the wealth effect. Therefore c0 falls.

Mathematically:
c0(1 + β1/θR1/θ−1) = (y0 + y1/R)

2.10.2 The 2-period case with y1 6= 0 and c0 = y0

The substitution effect is the only effect. c0 falls.

2.10.3 The 2-period case when c0 < y0 (lender)

Ambiguous. Income effect stronger than wealth effect.
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h0 = y0 + y1/R

A

c0 = y0

B

C

c1 = y1

Figure 5: An increase in interest rates when c0 = y0 and c1 = y1

2.10.4 2-period case when c0 > y0 (borrower)

wealth effect stronger than income effect. c0 falls.
Savings and Interest Rates: Recap:
The literature often considers the case θ = 1 as a benchmark, where income and

substitution effects cancel out, leaving the saving rate independent of the interest rate;

Furthermore, empirical estimates of the elasticity of intertemporal substitution suggest
relatively low numbers for 1/θ, especially since there are also income and wealth effects.

It is tempting to conclude from this that (a) the slope of consumption growth and (b) the
level of consumption will be largely unaffected by changes in the interest rate. However, this
answer can be misleading for a number of reasons:

• lifetime horizon. But even if the IES is small, it can have a large impact over a lifetime
(Summers 1981).

• This omits the wealth effect. Even if income and substitution effects cancel out, a
change in interest rates affects human wealth, and this leads to a change in consumption
in the PIH-LC model.

• Finally, the nature of the change in interest rates matters. For instance, a change in
interest rates due to tax changes may be offset somewhere else to leave government
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h0 = y0 + y1/R

A

y0

y1

Bc1

c0

Figure 6: An increase in interest rates for a saver (c0 < y0)

revenues unchanged. In that case, there is no income effect and only the substitution
effect. This might not be very helpful if the IES is small anyway.

2.11 The LifeCycle Model under Certainty Again

Consider now the case where R and β differ from 1. In addition, suppose that a0 = 0 and
that y is constant as before.

The Euler equation with CRRA preferences implies:

ct = (βR)t/θc0

Substituting into the budget constraint, we obtain:

c0 =
1− (βR1−θ)1/θ

1− (βR1−θ)T/θ

T−1∑
t=0

R−tyt

c0 =
1− (βR1−θ)1/θ

1− (βR1−θ)T/θ
1−R−N

1−R−1
y0

Suppose that βR > 1 so that consumption grows over time, even it θ is low. If the horizon
T is long enough relative to the working period, consumption must be much higher at the end
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h0 = y0 + y1/R

A

y0

y1

Bc1

c0

C

Figure 7: An increase in interest rates for a borrower (c0 > y0)

of life than at the beginning: the agent must accumulate a large stock of wealth. Aggregate
wealth and saving may be highly responsive to changes in interest rates. See Summers 1981.

3 Consumption under Uncertainty

Last class we looked at the consumption model under certainty. The model provides important
insights:

• consumption is a function of total wealth (permanent income)

• the slope of the consumption profile is controlled by the discount rate, the interest rate
and the intertemporal elasticity of substitution

• in a lifecycle environment, there is a substantial amount of life-cycle wealth accu-
mulation. In the simple model, the amount of wealth is ā/y = N/(2T )(T −N) =
40/(120)(20) = 800/120 = 6.66

• the elasticity of aggregate saving to the interest rate is complex.

The model needs to be extended to allow for uncertainty. Precautionary saving is another
reason why households decide to save. We start with the canonical model, augmented for
uncertainty.
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Solving equation (5) it is apparent that 

S ( ) WL ) 
(6) WL r-n-g 

Substituting for C/ WL in (6) yields the ag- 
gregate savings function: 

(7) S rL ( r -r ( (g-r)T' 

X (e(( 1)-g-n)T ) 

l -n-g] (g-r)(e( -r)T, 1) 

X (I -e -NT )(r-n-g) )_ n g 

It is noteworthy that (7) shows that the life 
cycle hypothesis gives rise to a steady-state 
aggregate savings function which may be 
represented by a variable propensity to save 
out of labor income, and a zero-savings pro- 
pensity out of capital income. The life cycle 
hypothesis thus gives rise to a savings func- 
tion which is quite different than that usually 
assumed in growth models which allow dif- 
ferent savings propensities out of different 
types of income. 

It is clear from (7) that the relationship 
between savings and the interest rate is com- 
plex and depends on all of the other parame- 
ters in the model. In Table 1 the savings rate, 
defined as S/ WL, and interest elasticity of 
aggregate savings Tjr' evaluated at various 
values of the interest rate, are reported for 
plausible parameter values. It is assumed that 
population grows at a 1.5 percent per an- 
num, productivity increases by 2 percent per 
annum, and that individuals live fifty-year 
economic lives with retirement at age 40. 
Somewhat arbitrarily, a 3 percent utility dis- 
count factor was chosen. 

TABLE 1-THE INTEREST ELASTICITY 
OF AGGREGATE SAVINGS 

Value of r 
.04 .06 .08 

y= .5 
71r 3.71 2.26 2.44 
S/WL .121 .274 .451 

y=O 
71r 3.36 1.89 1.87 
S/ WL .068 .142 .210 

y= -.5 
71r 3.09 1.71 1.54 
S/ WL .049 .096 .135 

Y= -I 
71r 2.87 1.59 1.37 
S/ WL .038 .073 .099 

y= -2 
71r 2.38 1.45 .122 
S/ WL .028 .048 .063 

y= -5 
71r .741 1.09 1.18 
S/ WL .014 .019 .025 

Note: The calculation assumes n =.015, g =.02, T'= 50, 
T=40, and 8 .03. The savings rate is measured as a 
fraction of labor income. 

The results universally support a high in- 
terest elasticity. In the plausible logarithmic 
utility case, the interest elasticity of the sav- 
ings rate varies from 3.36 at 4 percent to 1.87 
at 8 percent. This case also generates the 
most reasonable values for the aggregate sav- 
ings rate. The table demonstrates the un- 
importance of the elasticity of substitution 
between present and future consumption. For 
example, at an interest rate of .06, the elastic- 
ity of saving varies only from 2.26 when 
y- 1/2 to 1.09 when y =-5. The insensitiv- 
ity of the elasticity to the level of y reflects 
the fact that the "reduction in human wealth" 
effect is much more important that the sub- 
stitution effect of interest changes. The basic 
conclusion, a significant long-run interest 
elasticity of aggregate savings, is quite robust 
to changes in all of the parameter values. 
While very low values of y could generate 
low or even negative savings elasticities, they 
would also give rise to unrealistic savings 
propensities, unless the other parameter val- 
ues are set to implausible levels. Almost any 
plausible life cycle formulation is likely to 
imply a high long-run elasticity of savings 

This content downloaded from 169.229.32.36 on Tue, 14 Oct 2014 02:07:05 AM
All use subject to JSTOR Terms and Conditions

Figure 8: Table 1 from Summers (1981)

3.1 The Canonical Model

3.1.1 the set-up

The household has the following preferences over consumption sequences:

U = E

[ ∞∑
t=0

βtu(ct)|Ω0

]
(3)

Notice two differences with the model under certainty:

1. First I assume that the horizon is infinite. This is mostly to show you how to use solve
the model in that case. Nothing substantial rests on that hypothesis and I will point out
as we go where things might be different if we have a finite horizon. Formally, you
may think that households care about their offsprings and apply the same discount rate.
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2. The term E[.|Ω0] captures expectations conditional on information available at time
t = 0. This information set is denoted Ω0. This is also an important assumption. It
implies that preferences are separable over states and over time.. To see this, suppose
that there are St possible states of the world in period t and that each of them has
probability (as of time 0) given by πs,t. Then we can write the utility as:

U =
∞∑
t=0

∑
s∈St

βtπs,tu(cs,t)

This double separation imposes strong structure on preferences, but it simplifies tremen-
dously the analysis.

3. To lighten the notation, I will indifferently writeEt[.] orE[.|Ωt] to indicate conditional
expectation as of time t.

The household budget constraint takes the same form as before, except that now, I will
suppose that households face some uncertain interest rate R̃t+1 and an uncertain future
income ỹt. In this notation, the˜indicates that a variable is stochastic (as seen from previous
periods). The budget constraint then takes the form:

at+1 = R̃t+1(at + ỹt − ct) (4)

3.1.2 Recursive Representation

The problem is to maximize (3) subject to (4), and any other restriction on consumption
and asset choices, for a given initial level of wealth a0. For instance, we know that we only
consider positive consumption: ct ≥ 0.

We have also already discussed the fact that the household will not be allowed to run
Ponzi-like schemes:

lim
T→∞

βTaT ≥ 0

This constraint holds in the uncertain case, along all possible consumption sequences (tech-
nically, it holds almost surely).1 But there might be other constraints on assets holdings. For
instance, the household may be prevented from borrowing beyond a certain limit:

at ≥ a

At time t, at is a state variable of the household consumption problem, in the sense that
it is pre-determined by the previous actions of the households and is beyond its control.

1It is not sufficient that the No-Ponzi condition holds in expectation, that is E0[limT→∞ β
T aT ] ≥ 0. If this

were the case, then there would be possible paths with non-zero measure where the No-Ponzi condition would
be violated. Along these paths, lenders would have to agree to provide an infinite level of consumption to the
household. Note also that if the NPC holds a.s., then it holds in expectation, while the reverse is obviously not
true.
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We are going to assume that income and return realizations are iid, so that ỹt and R̃t are
not state variables of the household problem. This is mostly to keep notations simple. It
would be quite straightforward to extend the set-up to a case where ỹ and R̃ have a Markov
structure.

Remark 1 In some situations, it is easier to use cash-on-hand xt as the state variable, where
xt is defined as : xt = at + ỹt. xt represents the resources available for consumption
and saving to the household, after the realization of current income. The budget constraint
becomes:

xt+1 = R̃t+1(xt − ct) + ỹt+1

Since financial assets at are the sole state variable, we can write the value function that
maximizes the utility of the agent as a function of the state variable a:

v(a0) = max{ct}∞t=0
E0

[ ∞∑
t=0

βtu(ct)

]

Given the nicely recursive structure of the problem, we write the Bellman equation as
follows. Suppose that the level of assets is a in a given period. Consumption that period
must satisfy:

v(at) = maxct∈Ct u(ct) + βEt[v(at+1)]

s.t.
at+1 = R̃t+1(at+1 + ỹt − ct)

where Ct denotes the set of permissible consumption choices at time t. Notice that it is
the same value function that enters on both sides of this equation. So, one way to think about
the household problem is that the Bellman equation defines the value function as fixed point
of a functional equation. There are various theorems that establish existence and uniqueness
of this fixed point, when the Bellman equation is well-behaved -as is the case here.

Remark 2 If the functional equation is contraction mapping, then the Bellman equation has
a unique solution AND this solution can be found by iterating on the value function. This
provides a convenient (if not especially rapid) way to characterize numerically the value
function (value function iteration).

3.1.3 Optimal Consumption and Euler Equation

We start by assuming that the solution is interior to the set Ct. The first-order condition of
the above problem yields:

u′(ct) = βEt[v
′(at+1)R̃t+1]
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Let’s now consider what happens when there is a small change in at on the household
value function v(at). To calculate v′(at), let’s take a full derivative of the Bellman equation.2
The total variation is:

v′(at)da = u′(ct)dct + βEt[v
′(at+1)R̃t+1(da− dc)]

where dc denotes the change in optimal consumption for a given small change in a. Regroup-
ing terms, we obtain:

v′(at)da = (u′(ct)− βE[v′(at+1)R̃t+1])dc+ βE[v′(at+1)R̃t+1]da

The first term on the right hand side is zero from the first-order condition of the problem. So
we are left with:

v′(at) = βEt[v
′(at+1)R̃t+1]

This is a straightforward application of the Envelope Theorem.
Combining the first order condition and the Envelope theorem, we conclude that:

u′(ct) = v′(at)

Substituting back into the first order condition, we obtain the well-known Euler Equation
under uncertainty:

u′(ct) = βEt[R̃t+1u
′(ct+1)] (5)

What is the intuition for the Euler equation? A variational argument might help. Suppose
that we reduce consumption from the optimal path in period t by ε, and increase consumption
by R̃t+1ε next period (so that we are back on the optimal consumption path after period t+1).
The marginal disutility (as of time t) of reducing consumption in t is u′(ct)ε. The marginal
increase utility from higher consumption in t+ 1 (as of time t) is βEt[R̃t+1u

′(ct+1). For a
small ε the two should be equal (otherwise the proposed consumption is not optimal to start
with).

Note that the discount rate β and the interest rate R̃t+1 still play opposing force on
consumption growth, so the insights from the certainty case do carry over to the uncertain
case. But we now also have to take into account uncertainty over future returns and future
marginal utility.

Remark 3 The derivation above assume that consumption is interior. What would happen if
consumption is at the boundary. For instance, suppose that we impose the conditions that
0 ≤ c ≤ a+ y (how should we interpret this condition?). What form does the Euler equation
take?

2We are assuming that the value function is differentiable, which is not always the case. See Stokey, Lucas
and Prescott (1983) for more details on this.
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3.2 The Certainty Equivalent (CEQ)

The Euler equation provides some important insights into consumption behavior, but in its
general form, it is not very tractable. We now make a number of simplifying assumptions,
following Hall (1978).

First, we assume that there is no uncertainty in interest rates, so R̃t = R. Moreover, we
assume that there is no tilt in consumption profiles, that is βR = 1.

Second, we will consider a very particular form of preferences:

u(c) = αc− γc2/2; γ > 0, α > 0

In other words, preferences are quadratic over consumption. These preferences are very
weird from a number of points of view:

• even if α > 0, utility turns negative for sufficiently large consumption

• these preferences admit negative consumption (they definitely violate Inada’s condi-
tions)

So why would we want to make these crazy assumptions? Two possible justifications are:

• we could think of these preferences as a second order approximation of utility for more
general utility functions. If we think about it this way, then it would suggest that this
may not be such a bad approximation for relatively small changes in consumption over
time.

• these preferences have the important property that marginal utility is linear, or equiva-
lently that the second derivative is constant: u′(c) = α− γc and u′′(c) = −γ.

Let’s make these two assumptions and substitute into the Euler equation (5) to obtain:

ct = Et[ct+1] (6)

The stunning result here is that consumption follows a Random Walk. This means that
changes in consumption are unpredictable. To see how stunning it is, recall that if we had no
uncertainty (and βR = 1), then we would get

u′(ct) = u′(ct+1)

and so consumption would be constant over time, and therefore entirely predictable. Instead,
once we introduce uncertainty, consumption becomes entirely unpredictable!

To see what is going on, it helps to solve for the level of consumption in the CEQ case.
To do this, let’s first derive the Intertemporal Budget Constraint. First recall that the dynamic
budget constraint is:

at+1 = R(at + ỹt − ct)
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Let’s solve this sequence forward for a given sequence of consumption and income realization:

a0 = R−1(a1 + c0 − ỹ0 = ... =

∞∑
0

R−t(ct − ỹt) + lim
T→∞

R−TaT

With the No-Ponzi condition, the last term has to be positive, so the intertemporal budget
constraint takes the form:

∞∑
0

R−tct ≤ a0 +

∞∑
0

R−tỹt

Notice that this intertemporal budget constraint does not have an expectation term: it has
to hold along any possible realization of income and consumption: it holds almost surely.
But if it holds almost surely, then we are allowed to take expectations and the following also
holds:

E0[
∞∑
0

R−tct] ≤ a0 + E0[
∞∑
0

R−tỹt]

The next step is to observe that we can move the expectation inside the summation, and
use the fact that under the random walk hypothesis, the following holds:

E0ct = E0Et−1ct = E0ct−1 = ... = c0

where the second term follows from the Law of Iterated Expectations, the third one from the
fact that consumption follows a random walk at t and the last one from iterating the argument.

It follows that consumption at time t = 0 must satisfy:

c0
1

1−R−1
= a0 + E0[

∞∑
0

R−tỹt]

c0 = (1− β)

(
a0 + E0

[ ∞∑
0

R−tỹt

])

where we used the assumption that R−1 = β and the definition of xt in the second line.
What this tells us is that consumption follows the PIH in expectation. The term in parenthesis
on the right hand side is expected total wealth, where the expectation is over future labor
income.

This is why the model is called the ‘certainty equivalent’ model: as far as consumption
decisions are concerned, the household behaves as if future income was certain and equal
to its expected value. The source of this behavior can be traced back to the assumption of
quadratic utility. Note that the Euler equation in the CEQ model is:

ct = Etct+1
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what this tells us is that the household is smoothing consumption, but taking future consump-
tion as if it were certain and equal to its expected value. But if you retrace your steps, you
will see that this result arises from the Euler equation in general form:

u′(ct) = Etu
′(ct+1)

and the fact that marginal utility is linear when utility is quadratic: u′(c) = α − γc.
Anticipating on the next lecture, this tells you that this result will not hold in the more
general case where marginal utility is not linear.

Why are changes in consumption unpredictable, while the consumption level itself seems
to follow a minor modification of the PIH? To see what is going on, consider consumption in
two consecutive periods, t and t+ 1:

ct = (1− β)

(
at + Et

[ ∞∑
s=t

R−(s−t)ỹs

])

ct+1 = (1− β)

(
at+1 + Et+1

[ ∞∑
s=t+1

R−(s−(t+1))ỹs

])

Take the difference and substitute at+1 = R(at + ỹt − ct) to obtain:

ct+1 − ct = (1− β)

(
at+1 − at +

∞∑
s=t+1

R−(s−(t+1))Et+1ỹs −
∞∑
s=t

R−(s−(t))Etỹs

)

= (1− β)

(
R(at + ỹt − ct)− at +

∞∑
s=t+1

R−(s−(t+1))Et+1ỹs −
∞∑
s=t

R−(s−(t))Etỹs

)

= (1− β)

(
(R− 1)at +Rỹt −Rct +R

∞∑
s=t+1

R−(s−t)Et+1ỹs −
∞∑
s=t

R−(s−(t))Etỹs

)

= (1− β)

(
−R

∞∑
s=t+1

R−(s−t)Etỹs +R

∞∑
s=t+1

R−(s−t)Et+1ỹs

)

using the expression for ct and the fact that βR = 1, we obtain finally:

ct+1 − ct = (R− 1)

∞∑
s=t+1

R−(s−t)(Et+1ỹs − Etỹs) (7)

Notice that the term in the summation on the right hand side of (7) isEt+1ỹs−Etỹs, that
is, the revision in expectations about future income. Of course, this revision is unpredictable
as of period t, otherwise it would already have been incorporated in the current expectation
Etỹs!
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This gives us a very nice result: the change in consumption is related to the news the
household receives about future income. We will see also that it provides us with a way to
test the certainty equivalent model.

Remark 4 You can check that if you take expectations as of time t on both side of this
equation, you recover Etct+1 − ct = 0.

Example 1 Consider the case where income follows an AR(1) process:

ỹt+1 = ρỹt + ηt+1; 0 < ρ ≤ 1

Then we can easily check that Etỹs = ρs−tỹt. Substituting back into (7), we obtain after
some easy manipulations:

ct+1 − ct =
1− β
1− ρβ

ηt+1

Since ρ ≤ 1, ct+1 − ct ≤ ηt+1, that is, consumption in general responds less than 1 for 1 to
a change in income. The case where consumption moves 1 for 1 is when ρ = 1, i.e. income
itself is a random walk.

3.3 Tests of the Certainty Equivalent Model

3.3.1 Testing the Euler Equation

The literature up until Hall (1978) used to attempt to derive closed form solution for
consumption (i.e. a consumption function) and estimate it. But a closed form solution
for the consumption function is often not available. So instead, the literature would try to
identify the determinants of consumption and estimate empirically the relationship between
consumption and its determinants. This would not allow for a rigorous test of the theory. In
addition, the regression typically faced a serious problem of identification since income (the
most common right hand side variable) is not exogenous.

Instead, Hall argued that we can test the theory by directly testing the first-order condition
of the model, i.e. the Euler equation. Under rational expectation, any variable can be
expressed as the sum of its conditional expectation and an innovation term, orthogonal to
any information available at time t:

ct+1 = Etct+1 + εt+1 = ct + εt+1

where Etεt+1 = 0 and the second equality uses (6). So the theory implies that ct contains all
the relevant information necessary to predict ct+1.

Under the null hypothesis that the theory is correct, a regression of the form:

ct+1 = a+ b ct + c xt + εt+1 (8)
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where xt is any variable available at time t to the household should yield:

â = 0; b̂ = 1; ĉ = 0

What is important in that regression is that it does not matter whether yt is exogenous or
not (the key problem with the consumption function estimation approach). The key test is
whether ĉ = 0 or not. If we find some variables, known as of time t that can help predict
next period’s consumption after controlling for current consumption, then the theory has to
be incorrect.

Remark 5 Notice that the theory does not say that consumption should not react to current
income. In other words, if we run the regression

ct+1 = a+ b ct + c xt + d yt+1 + εt+1

there is no presumption that d̂ should be equal to 0.

Remark 6 Notice that given (7), we know that

εt+1 = (R− 1)
∞∑

s=t+1

R−(s−t)(Et+1ỹs − Etỹs)

One could think that this would provide another way to test the theory. For instance, when
income follows an AR(1) process as above, we know that the consumption innovation is given
by:

εt+1 =
1− β
1− ρβ

ηt+1

so the innovation to consumption εt+1 and the innovation to income ηt+1 are linked in a very
precise way. However, this could be exploited only if the household learns about the change
in its income as it happens. If instead, the household learns about a change in its income
before it is realized, this is when consumption will change, and not when the actual change in
income occurs. Unless the econometrician has information on when the information becomes
available to the household (more on this below), then the relationship above will not be
terribly useful. Testing the first order condition remains valid, however, since any information
known at time t to the household should not help predict future consumption.

Hall (1978) tests the CEQ model using aggregate quarterly data on non-durable real
consumption per capita and real disposable income per capita. The results (see attached
table) suggest that indeed lagged income is not helpful in predicting future consumption (on
top of lagged consumption).
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Figure 9: Table 3 in Hall (1978).

3.3.2 Allowing for time-variation in interest rate: the log-linearized Euler equation

The regression (8) imposes that the gross real interest is constant and equal to the inverse
of the discount factor. It also imposes that preferences are quadratic. We can relax both
assumptions yet obtain a result very similar to the CEQ, as long as we are looking at small
deviations around the equilibrium.3

To see how this is done, consider the Euler equation of the general model:

u′(ct) = βEt[R̃t+1u
′(ct+1)]

Assume that R̃t+1 is known as of time t. This would be the case if R̃t+1 is the return on
a one-period risk free bond between t and t+ 1. Assume further that preferences are CRRA
so that u′(c) = c−θ, with θ > 0.

The Euler equation takes the form:

c−θt = βRt+1Et[c
−θ
t+1]

We can rewrite this as follows:

1 = βRt+1Et[c
−θ
t+1c

θ
t ]

1 = exp(−ρ+ rt+1)Et[exp(−θ∆ ln ct+1)]

0 = −ρ+ rt+1 + lnEt[exp(−θ ln(ct+1/ct)]

where we define ρ = − lnβ and rt = lnRt+1 and where the third line takes logs. Assume
now that ∆ ln ct+1 is conditionally normally distributed. Then, the Euler equation takes the
form:

0 = −ρ+ rt+1 − θEt∆ ln ct+1 +
1

2
θ2Vt∆ ln ct+1

3Recall that we motivated the CEQ as a second order approximation of preferences around the equilibrium.
Instead of taking a second order approximation of preferences then solving for optimal smoothing, we can take a
first order condition of the first order condition of the general consumption-saving problem.
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where Vt∆ ln ct+1 is the conditional variance of consumption growth.4 If consumption
growth is not conditionally normally distributed, this expression is a second-order approxi-
mation.

Re-arranging, we obtain:

Et∆ ln ct+1 ≈
1

θ
(rt+1 − ρ) +

1

2
θVt∆ ln ct+1 (9)

If we ignore the conditional variance term, and assume that the interest rate is equal to
the discount rate (rt = ρ), then we obtain an expression similar to the CEQ:

Et ln ct+1 ≈ ln ct.

log-consumption follows a random-walk.5

If the interest rate is not constant, but we still ignore the variance term, we recover that
expected consumption growth depends on the difference between the interest rate and the
growth rate, scaled by the IES 1/θ: Et∆ ln ct+1 = 1/θ(rt+1 − ρ).

As we will see a bit later, the variance term captures the precautionary savings component
of consumption growth. It is always positive, increasing the growth rate of consumption.

For now, let’s assume that the variance term is either zero, or constant. The log-linearized
Euler equation leads to the following empirical specification:

ln ct+1 = a+ b ln ct + c xt + d rt+1 + εt+1

and, if the equation is correctly specified, the point estimate d̂ should be the Intertemporal
Elasticity of Substitution 1/θ.6

Equations of that form have been estimated in literally hundred of papers. The goals of
these regressions are usually two-fold:

1. estimate 1/θ from d̂, the IES from the coefficient on rt+1

2. test the orthogonality restriction that information available at time t does not predict
consumption growth: ĉ = 0. For example, expected income growth Et∆ ln ỹt+1

should not help predict consumption growth.

The literature typically finds:
4This results from the fact that if x is distributedN (µ, σ) then E[exp(x)] = exp(µ+ 1/2σ2).
5The original CEQ model states that consumption in levels follows a random walk. The log-linearized result

states that it is log-consumption that follows a random walk. The two are not very different for small deviations.
Moreover, a random walk in logs is probably a better empirical specification given that consumption (and its
innovations) grow over time. Campbell and Mankiw (1989) test the CEQ in logs.

6The constant a captures the sum of the impatience terms ρ/θ and the –constant– precautionary term
θ/2Vt∆ ln ct+1 and so does not provide useful information.
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1. estimates of 1/θ between 0 and 0.2, i.e. very low estimates of the sensitivity of
consumption growth to the interest rate. Recall however, that aggregate saving can still
be quite sensitive to the interest rate because people have long lifetimes (so the effects
build up over long periods)

2. ĉ is positive and significant when using Et∆ ln ỹt+1 as a regressor. This means
that we reject the strict CEQ restriction. Expected income growth predicts expected
consumption growth. This is sometimes referred to as the ‘Excess Sensitivity of
Consumption’. The conclusion is we reject the joint assumptions that (1) the Euler
equation is true; (2) the utility function is CRRA; or (3) the linearization is accurate;

Remark 7 The excess sensitivity is in response to variables that consumption should not
respond too. In addition to excess sensitivity, there is an excess smoothness puzzle, whereby if
income changes are very persistent, then innovations to consumption should be more volatile
than innovations to income. One can see this is we assume the following process for income:
∆ỹt+1 = µt+1 + γµt, with γ > 0, i.e. a MA(1) for income change. Then one can show that

εt+1 = (1 + γ)µt+1

Deaton (1987) observed that despite γ > 0, consumption innovations appear less volatile
than income innovations.

3.3.3 Campbell and Mankiw (1989)

This is an example of a paper estimating an equation similar to (9). They start from the
baseline CEQ model (consumption is a random walk). Rather then simply test the null that all
consumers are CEQ consumers, so that aggregate consumption also follows a random walk,
they specify an alternative where a fraction λ of consumers are ‘hand-to-mouth’ with cht = yht
while the remaining consumers are CEQ with ∆crt+1 = εrt+1. Aggregate consumption change
is then the sum of the consumption change of the hand-to-mouth consumers and of the CEQ
consumers:

∆ct+1 = λ∆yt+1 + (1− λ)εt+1

Since εt+1 is not observed, it is treated as the residual of the regression.

However, εt+1 is likely to be correlated with income changes, so the equation above
cannot be estimated directly. Instead, income changes need to be instrumented, using as
instruments any lagged variables (hence orthogonal to εt+1) and good predictors of income
growth. Equivalently, this consists in constructing a measure of predicted income change
Et∆yt+1 and regressing realized consumption changes on predicted income changes.

This approach provides an alternative to the null that all consumers are CEQ. It
even allows to quantify the share of consumers that are hand-to-mouth, as measured
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by λ. The estimates indicate that λ is quite high, on the order of 0.48 in the US (see Table 10).7

In addition, they run the regression including the real interest rate (see Table 11). They
use as real interest rate the 3-month T-bill rate over the quarter minus the rate of change in
the PCE deflator. They instrument the real interest rate using lagged real interest rates (since
the regression should use ex-ante real interest rates).

The specification becomes:

∆ct+1 = λ∆yt+1 + (1− λ)/θrt+1 + (1− λ)εt+1

Notice that the coefficient on the real interest rate is not the IES, but the IES multiplied by
the share of CEQ consumers. Hence, λ = 0, the coefficient is going to be biased downwards.
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Figure 10: Campbell and Mankiw (1989), Table 2.

7Note that Campbell and Mankiw in fact log consumption when they estimate their regression, so in fact they
are working with a specification close to the log-linearized CEQ.

28



����"�&$03%(//�	�0$1.,:�

VLRQ�OLQH�RI�WKH�H[SHFWHG�FRQVXPSWLRQ�FKDQJH�RQ�WKH�H[SHFWHG�UHDO�LQWHU��
HVW�UDWH��DQG�LW�LV�QHDU�KRUL]RQWDO��1RWH�WKDW�ZH�FDQQRW�HVWLPDWH�WKH�
UHYHUVH�QRUPDOL]DWLRQ��ZH�KDYH�EHHQ�XQDEOH�WR�ILQG�DQ\�LQVWUXPHQWV�WKDW�
IRUHFDVW�$F����$\��DV�PXVW�EH�WKH�FDVH�LI�$ ����DQG�R� ����

7DEOH��� 81,7('�67$7(6������������
$FW� �

L��
��$$\W���2UW�

)LUVW�VWDJH�UHJUHVVLRQV� $� �� 7HVW�RI�
5RZ� ,QVWUXPHQWV� $F� $\� U� �V�H��� �V�H��� UHVWULFWLRQV�

�� 1RQH��2/6�� �� �� �� ������ ������ ��
�������� ��������

�� $<W������� �$<W��� ������ ������ ������ ������ ������ �������

UW�B�������
UW��� �������� �������� �������� �������� �������� ��������

�� $&W������ �����$&W�� ������ ������ ������ ������ ������ �������
UW�������
�
� UW��� �������� �������� �������� �������� �������� ��������

�� $LW��������� LW��� ������ ������ ������ ������ ������ �������
UW������� �UW��� �������� �������� �������� �������� �������� ��������

1RWH��6HH�7DEOH���

)LJXUH���6&$77(53/27�2)�(;3(&7('�&+$1*(�,1�&2168037,21�)25�
�3(50$1(17�,1&20(��&21680(56�$1'�7+(�(;3(&7('�
5($/�,17(5(67�5$7(�

������

������
��

������
2� ��������

������

�� ������

,���
6�������

��
/8�
D� ���������[�
Z� ��������

�������
U�

������� ������� ������� �� ������ ������ ������

(;3(&7('�5($/�,17(5(67�5$7(�

This content downloaded from 169.229.32.36 on Thu, 16 Oct 2014 04:11:12 AM
All use subject to JSTOR Terms and Conditions

Figure 11: Campbell and Mankiw (1989), Table 5.

3.3.4 Household level data: Shea (1995), Parker (1999), Souleles (1999) and Hsieh
(2003)

While early papers (like Hall (1978) or Campbell and Mankiw (1989)) tested the CEQ using
aggregate data, the literature quickly moved to testing the CEQ using household level data.
There are a number of reasons why this is more satisfying:

• aggregate consumption does not fluctuate much. By contrast, household level con-
sumption can fluctuate a lot more

• we can hope to identify more precisely expected future income for some categories of
workers (Shea (1995)) and so we get cross sectional variation that adds to the power of
the tests

• we can use ‘natural experiments’ where households learn about future income in
a measurable way, and then measure the response of consumption (Parker (1999),
Souleles (1999), Hsieh (2003)).

But household level data can also be problematic: accurate time series data on consumption
and income for a given household is hard to obtain. One needs to worry about sampling
weights, sample attrition...

• Shea (1995, AER): uses the PSID. PSID is a panel with reasonable income data, but
only food consumption. It also oversample poor households. Shea matches head of
households to union contracts and uses publicly available information on union wage
growth to construct a measure of expected wage growth. He assigns respondents to
unions with national or regional bargaining: trucking, postal service, railroads... or
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lumber in the Pacific Northwest, shipping on the East Coast.... He matches other
respondents to dominant employers in some areas (e.g. worker in the automobile
industry living near flint will be assigned to G.M.). Ends up with 647 observations
from 285 households. Finds that expected wage growth predicts expected consumption
growth.

• Parker (1999) uses the Consumption Expenditure Survey, used to construct the con-
sumption weights for the Consumer Price index. Not a panel, but repeated cross
sections. Each household stays in the CEX for 4 quarters, which yields 5 interviews,
with income and demographic data collected in interviews 2 and 5. The CEX has
excellent coverage of consumption, but relatively poor measures of income and also
has a very limited time dimension for each household. Parker uses the fact that different
households will hit the cap at different times during the calendar year and therefore
will see a drop in payroll taxes in different quarters. Crucially, the household knows
in advance whether he/she will hit the cap in a given quarter, so consumption should
not respond. Yet, he finds a predictable response of consumption. The elasticity of
consumption to predictable income is around 0.5.

• Souleles (1999) looks at income tax refunds, using the CEX. Since income tax refunds
are known in advance (taxpayers know their income of the previous year and calculate
the size of the refund when they file), consumption should not change when the refund
is received. The CEX survey asks the household about tax refunds in the second and
final interviews. Souleles finds that consumption responds to the tax refund. In a more
recent paper, Parker, Souleles, Johnson and McClellan (2013, AER) add a module to
the CEX questionnaire during the period of the 2008 stimulus payment (a tax cut).
Cross sectional variation arises from the random timing of receipts, based on the last
two digits of the recipient SSN. The amount of the tax cut was also well publicized
and known in advance ($300-$600 for individuals, $600-$1200 for couples....). They
find that households spent 12-30% of the tax cut.

• Hsieh (2003) instead exploits the annual payments of the Alaska Permanent fund to all
Alaskan residents. The amount disbursed is large and known in advance. Using the
CEX again, Hsieh finds that there is little evidence of a change in consumption during
the quarter of the receipt of the fund. Variation comes from changes over time in the
size of the transfers as well as cross sectional variation in family size. Importantly,
Hsieh finds that –while consumption does not respond to the payment of the Alaskan
Permanent Fund– it does respond to tax refunds, suggesting that there is an issue of
‘saliency’ of the change in income.

Why does expected income growth predict consumption growth?

• Consumption and leisure are substitutes (Aguiar and Hurst 2005 JPE). Home production
and work-related expenditures. Relevant when thinking about drop in consumption at
retirement. Food expenditures drops because home production (not recorded in food
expenditures) rises dramatically.
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quarterly income, and z contains variables for
changes in the number of adults, number of
children, and a second-order polynomial in age
of the head of the household to capture the fact
that household consumption is generally not flat
over the life cycle. The amount of the payment
received by each household is calculated as the
product of PFD and family size. The main in-
dependent variable is the percentage increase in
a household’s income in the fourth quarter due
to payments from the Permanent Fund, and the
key parameter of interest is "1 which measures
the elasticity of consumption to household in-
come. The dependent variable is the change in
household consumption (in logs) from the third
quarter to the fourth quarter of the year. As
previously mentioned, Alaskan residents re-
ceived their dividend payments in the fourth quar-
ter of the year. Under the certainty-equivalent
version of the LC/PIH (or a version of the
LC/PIH in which the expected variance of con-
sumption is constant), "1 should be equal to
zero.
The first column in Table 2 presents the re-

sults of the first set of excess sensitivity tests for
nondurable consumption.10 The point estimate
of "1 is positive, but economically and statisti-
cally insignificant; it indicates that a 10-percent
increase in household income increases con-
sumption by 0.002 percent. Since the dividend
payments increased the quarterly income of the

typical household in my sample by slightly
more than 20 percent (see Table 1), the point
estimate of the elasticity of nondurable con-
sumption suggests that the Permanent Fund
payments increased household consumption by
0.004 percent (roughly 4 cents) in the fourth
quarter of the year.
The estimate in the basic specification in the

first column is identified both by differences in
the size of the payment across time and across
families of different sizes. The second column
in Table 2 controls for year effects and thus
identifies the effect of the Permanent Fund only
from the cross-sectional variation in family size.
Although one should interpret these estimates
with caution since there are clearly reasons to
expect the seasonal pattern of consumption to
differ between families of different sizes, the
point estimate of the elasticity of consumption
is still essentially zero. The specification in the
third column controls for family size and thus
only uses the variation across time in the
amount of the payment to identify the consump-
tion effects of the dividend payments. Once
again, one should be cautious in interpreting
these numbers, since the seasonal pattern of
consumption may have changed over time.
Nonetheless, the point estimate of the income
elasticity of consumption is still economically
and statistically insignificant.
The last three columns in Table 2 present

estimates of the response of expenditures on
durables to the Permanent Fund payments using
the three excess sensitivity tests. The coefficient
estimates are small but marginally significant.
Surprisingly, the point estimates indicate that

10 All the regressions also include a constant. I do not use
the CEX’s sampling weights, although the results are vir-
tually identical if the weights are used.

TABLE 2—RESPONSE OF CONSUMPTION TO ALASKA PFD

dlog(Nondurable
consumption)

dlog(Durable
consumption)

(1) (2) (3) (4) (5) (6)

PFDt # Family Sizeh
Family Incomeh

0.0002
(0.0324)

!0.0167
(0.0336)

!0.0034
(0.0328)

!0.1659
(0.0878)

!0.1741
(0.0916)

!0.1488
(0.0890)

Controls for:
Family size No No Yes No No Yes
Year dummies No Yes No No Yes No

Number of observations 806 806 806 806 806 806

Notes: Dependent variable is log(CIV/CIII). Standard errors are in parentheses. All regres-
sions are ordinary least squares (OLS) and include a quadratic in age and changes in the
number of children and adults in the household.
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Figure 12: Hsieh (2003): Table 2

• Households support lots of dependent in mid-life (children, college...). Hence they
have no choice but to have high consumption when income is high

• households are liquidity constrained and impatients (more on this later)

• some consumers are ‘rule of thumb’ consumers (Campbell and Mankiw 1989)

• welfare costs of not optimizing constantly are second order

3.3.5 A Detour: GMM Estimation

With CRRA preferences, the general equation to be estimated is

c−θt = βEt[R̃t+1c
−θ
t+1]

This is a non-linear equation with at least two parameters: θ and β. The general idea
of the Hansen and Singleton (1982) Generalized Method of Moments (GMM) estimation
method is to define zt+1 = βR̃t+1c

−θ
t+1 − c

−θ
t . Then, under the null that the model is correct,

Etzt+1 = 0. In other words, zt+1 is unpredictable based on any variable dated t or earlier.
Suppose we consider such a variable wi,t. Then we must have E[zt+1wi,t] = 0. The sample
analog of this moment condition is: vi =

∑T−1
t=0 wi,tzt+1 = 0. If we have J such variables,

then we can estimate the parameters of the model by minimizing v′Ωv where v ‘stacks’ all
the moment conditions: v = (v1, v2, ...vJ)′ and where Ω is some weighting matrix. This
method is very general (and is one of the reasons Hansen received the Nobel prize in 2013).
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Fig 1.—Percentage change in food expenditure, predicted food consumption index, and time spent on food production for male household heads
by three-year age ranges. Data are taken from the pooled 1989–91 and 1994–96 cross sections of the CSFII, excluding the oversample of low-income
households. The sample is restricted to male household heads (1,510 households). All series were normalized by the average levels for household heads
aged 57–59. All subsequent years are the percentage deviations from the age 57–59 levels. See Sec. IV for details of data and derivation of food
consumption index

Figure 13: Aguiar & Hurst (2005), figure 1.

4 Moving beyond the CEQ

The CEQ model provides some interesting insights, mainly consumption smoothing (i.e.
the fact that consumption is going to respond to permanent changes more than to transitory
ones). Yet the model is soundly rejected.

In particular, consumption growth responds to income growth. The model also predicts
that consumption profile should be dictated by the interest rate and the rate of time preference,
not by the actual timing of income. This is also rejected: Carroll and Summers show that
consumption profiles track income profiles for different occupations or in different countries.
See figures 14 and 15.

Most households have relatively little wealth, so their consumption will mostly track their
income. Yet, the use their modest saving to ‘buffer’ income shocks. We are interested in
understanding these ‘buffer stock’ households.
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322 Christopher D. Carroll and Lawrence H. Summers 
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Fig. 1 0 . 7 ~  Income and consumption profiles by educational group, 1960-61 
CES 
Source: Calculations by authors using CES tapes. 

cational and occupational groups. While the issue deserves further research, 
our tentative conclusion is that parallel movements in income and consump- 
tion cannot be explained by family size considerations. 

Another explanation of the consumptionlincome parallel was provided by 
Ghez (1975). Using the 1960 CES, Ghez prepared a figure for all consumers 
similar to our figures 10.7 and 10.8 for subcategories of consumers and sought 
to explain the observed close correlation between income and consumption 
using a “family production function” model of the type advocated by Becker 
(1965). Suppose, for example, that utility is a function both of consumption c 
and hours of leisure h. Suppose further that, because of the accumulation of 
experience or other human capital, hourly wages grow over the life cycle. 
Then individuals will have an incentive to work the longest hours when they 
are most productive, late in life. But this extra work takes away leisure time, 
giving the consumer an incentive to consume more time-substituting goods. 

Figure 14: Carroll & Summers (1991), figure 10.7a
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323 Consumption Growth Parallels Income Growth 
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The consumer will therefore be observed consuming more during those peri- 
ods of life when he works most and earns the most income. To be more spe- 
cific, this model would suggest that busy executives late in life would be more 
likely to have a maid to do housekeeping chores and more likely to send out 
their laundry than young people with (presumably) more time on their hands. 

Figure 15: Carroll & Summers (1991), figure 10.7b34



4.1 Precautionary Saving

If we move away from linear marginal utility (i.e. quadratic utility), we open the door to
precautionary saving. In that case, the household will care about higher moments of future
consumption. Suppose that u′(.) is convex, i.e. that u′′′(.) is positive. In that case, we know
from the convexity of u′ that:

Et[u
′(ct+1)] ≥ u′(Et[ct+1])

and the inequality is strict when there is uncertainty about future consumption. This implies
that we cannot have ct = Et[ct+1]. If this were the case, then :

u′(ct) = u′(Et[ct+1]) < Et[u
′(ct+1)]

which would violate the Euler equation. Consumption ct has to be lower than in the CEQ
case , that is

ct < Et[ct+1]

Uncertainty depresses current consumption and thus raises saving. This is known as
precautionary saving (or saving for a rainy day).

u′(c)

c

u′(cl)

cl

u′(ch)

ch

AE[u′(c)]

E[c]

Bu′(E[c])

Figure 16: Convex marginal utility
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For general preferences, Kimball (1990) showed that what matters for the precautionary
motive is the concavity of −u′(.) (or equivalently the convexity of u′(.)). He defined a
coefficient of relative prudence as:8

CRP = −u
′′′(c)c

u′′(c)

Remark 8 For CRRA preferences u′(c) = c−θ and the coefficient of relative prudence is
constant and equal to:

CRP = −θ(1 + θ)c−θ−1

−θc−θ−1
= 1 + θ

To see the role that prudence plays, consider the case where βR = 1 (so that a CEQ
household would want to keep consumption flat over time) and let’s perform a second-order
Taylor expansion of the Euler equation around ct:

E[u′(ct+1)] ≈ E[u′(ct) + u′′(ct)(ct+1 − ct) + 1/2u′′′(ct)(ct+1 − ct)2]
≈ u′(ct) + u′′(ct)E[(ct+1 − ct)] + 1/2u′′′(ct)Et[(ct+1 − ct)2]

Now, substitute into the Euler equation (with βR = 1) to obtain:

u′(ct) = u′(ct) + u′′(ct)E[(ct+1 − ct)] + 1/2u′′′(ct)Et[(ct+1 − ct)2]

Rearrange to solve for expected consumption growth:

E[
ct+1 − ct

ct
] = −u

′′′(ct)ct
u′′(ct)

Et[(
ct+1 − ct

ct
)2] = CRP Et[(

ct+1 − ct
ct

)2]

The slope of consumption growth is controlled by the coefficient of relative prudence
and something that looks like the conditional variance of consumption growth (it’s not quite
the variance since ct 6= Et[ct+1]).

Everything else equal, precautionary saving tends to increase expected consumption
growth. How does this modify the Euler equation estimation?

To answer this question, let’s consider again the log-linearized Euler equation (9) rewritten
below for convenience:9

Et∆ ln ct+1 ≈
1

θ
(rt+1 − ρ) +

1

2
θVt∆ ln ct+1

8There is also a coefficient of absolute prudence, defined as −u′′′(c)/u′′(c).
9Technical observation: in the log-linear Euler equation the conditional variance is scaled by θ while in the

derivation above, it is scaled by the CRP 1 + θ. The reason for the difference is that in the log-linear Euler
equation there is an adjustment for the concavity of the log (Jensen’s inequality).
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This gives the following empirical specification:

∆ ln ct+1 =
1

θ
(rt+1 − ρ) +

1

2
θVt∆ ln ct+1 + εt+1

Suppose for the time being that we ignore the precautionary term in this expression,
i.e. that we lump it with the error term of the regression εt+1 and estimate the first-order
log-linear Euler equation. This would be valid if we satisfy the orthogonality condition
that the precautionary term is orthogonal to the interest rate. Carroll (1997) [death to the
log-linearized Euler equation!] argues that this is unlikely to be the case. The reason is
that both the interest rate rt+1 and the conditional variance of consumption growth are
endogenous objects and are likely to interact in the general equilibrium of the economy.
This implies that the precautionary saving term is an omitted variable that is likely to be
correlated with the equilibrium interest rate.

To see how this works most simply, suppose that the economy is on a balanced growth
path where households face some level of idiosyncratic risk, but no aggregate risk.10 Along
such a balanced growth path, the growth rate of aggregate consumption must equal the growth
rate of aggregate income which is certain, since there is no aggregate risk, and which we
denote gy = ∆ ln yt+1. If households are ex-ante identical, facing the same amount of risk
etc... they will all choose the same expected consumption growth, therefore also equal to gy.
It follows from the second order log-linearized Euler equation that:

gy ≈
1

θ
(rt+1 − ρ) +

1

2
θVt∆ ln ct+1

This equation tells us that in the aggregate equilibrium, the variance of idiosyncratic
consumption growth and the interest rate will be related by:

rt+1 = θgy + ρ− θ2

2
Vt∆ ln ct+1

A higher amount of uninsurable idiosyncratic risk (as measured by Vt∆ ln ct+1) will be
associated with a lower real riskfree interest rate rt+1. Carroll concludes that estimating the
first-order log-linearized Euler equation (i.e. without controlling for precautionary saving) is
likely to be seriously misspecified. This can explain in particular why the estimated IES is
very low.

A way to address this critique would be to incorporate directly in the regression a term
that controls for the importance of precautionary saving, i.e. for the term θ

2Vt∆ ln ct+1 in
the regression. This is what Dynan (1993) does by adding proxies for income uncertainty.
But it is difficult to obtain such estimates in the first place, and if we try to instrument for the
precautionary saving motive, we have to be careful to find instruments that for precautionary
saving that are independent from the interest rate, not an easy task.

10Implicitly this requires that some risk sharing opportunities are not exploited. Otherwise, households would
like to diversify their idiosyncratic risk away. Technically, such models are called Bewley models, after Bewley
(1977). For a seminal Bewley model, see Aiyagari (1994).
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4.2 The Buffer Stock Model

Intuitively, precautionary saving tilts-up consumption profiles and therefore leads to more
saving and wealth accumulation. Consider a household that faces income uncertainty. If that
household has a high wealth level, then heuristically income uncertainty should not matter
much and therefore consumption should not be too different from the certainty equivalent
framework (CEQ). We know that in that case, what controls the slope of the expected
consumption profile (and therefore of subsequent wealth) is whether βR is smaller of greater
than 1.

• If βR > 1, the household is patient and would like to save. In that case, the precaution-
ary and smoothing motive push in the same direction: eventually, the household will
manage to accumulate enough assets to insure against income fluctuations. In fact, if
βR > 1 an infinitely lived household would accumulate an unbounded level of assets.

• If βR = 1, the argument is a bit more subtle, but the result is the same. Here,
the household would like to smooth marginal utility. It will be able to do this by
accumulating an unbounded amount of wealth.11 The upshot is that if βR ≥ 1 the
model is not terribly interesting: the household would just accumulate vast amounts
of wealth, enough to be indifferent to the impact of income fluctuations on marginal
utility. This is neither interesting nor realistic!

• The last case is when βR < 1. In that case, the household is impatient. A CEQ
household would run choose to consume more today and run down assets. But by
running down assets, it increases the strength of the precautionary saving motive since
income fluctuations are more likely to impact marginal utility. So this case present
an interesting tension: on the one hand, the household would like to save to smooth
fluctuations in marginal utility. On the other hand, it wants to consume now and prefers
not to accumulate wealth. The result from this tension is that the household will aim
to achieve a certain target level of liquid wealth, but not more. Once households have
accumulated this target level of wealth, consumption will tend to track income at high
frequency (even in response to predictable income change), thus potentially explaining
the excess sensitivity puzzle. It can also explain why consumption tracks income at
low frequency (explaining the Carroll-Summers (1991) empirical patterns in figures
14 and 15). This is the buffer-stock model.

Let’s flesh the details of that model out. Consider a household with standard preferences:

U = max
{ct}

∞∑
t=0

βtu(ct)

11This result is formally established by Schechtman (1975) and Bewley (1977). See Deaton (1991) for a
discussion.
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and with a budget constraint:

at+1 = R(at + ỹt − ct)

The household faces a constant interest rate R but a stochastic income stream {ỹt},
where we assume for simplicity that ỹt is independently identically distributed every period.
We assume that βR < 1 so that, if there was no uncertainty, the household would prefer
to consume now and would run down assets over time, and even borrow against future income.

How much would the household borrow? If ymin ≥ 0 is the lowest possible realization
of income every period, then it is immediate to show that the household would not be able
to run its asset levels below amin = −ymin/(R− 1).12 If the household borrowed a larger
amount at any point in time, there would be a strictly positive probability that it would not be
able to repay. In other words, amin is the natural borrowing limit faced by the household. It
is the present value of the lowest possible income the household would receive from now
on, and at ≥ amin. Of course, it is possible that the household faces a stronger liquidity
constraint than the natural borrowing limit, if access to credit markets is limited. This is a
relevant feature of the world since many people face limited access to credit markets.

In order to fix ideas, we are going to consider an extreme case where the household
cannot borrow at all. That is, we impose the restriction that:13

at ≥ 0

If there was no uncertainty, the solution to the household consumption-saving problem
would be quite straightforward: it would run down initial assets a0, then set consumption
equal to income. With uncertainty, this is not going to be optimal for the reasons discussed
above: it would leave the household exposed to too much fluctuations in marginal utility.

Therefore, there should be some target level of liquid wealth that the household would
like to revert to.

We can write the income fluctuations problem as (see Deaton (1991)):

U = max
{ct}

∞∑
t=0

βtu(ct)

subject to:

at+1 = R(at + ỹt − ct)
at ≥ 0

ct ≥ 0

12This condition derives from the intertemporal budget constraint and the requirement that consumption
remain positive.

13This corresponds to the natural borrowing limit if ymin = 0.
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It is useful to express the problem in terms of ‘cash on hand’ xt, defined as the amount
of liquid resources the household has access to at the beginning of the period:

xt = at + yt

The constraints of the problem become:

xt+1 = R(xt − ct) + ỹt+1

0 ≤ ct ≤ xt

Let’s define v(xt) the value function of this problem. We can write the associated Bellman
equation:

v(xt) = maxctu(ct) + βEt[v(xt+1)]

s.t.
xt+1 = R(xt − ct) + ỹt+1

0 ≤ ct ≤ xt

The first order condition associated with this Bellman equation is:

u′(ct) = βREt[v
′(ct+1)] + λt

where λt is the Lagrange multiplier associated with the constraint ct ≤ xt.14 The comple-
mentary slackness condition is:

λt(xt − ct) = 0

For the usual envelope reasons, the marginal value of cash on hand satisfies:

v′(xt) = βREt[v
′(xt+1)] + λt = u′(ct)

It follows that:

• when the credit constraint does not bind, the usual Euler equation holds:

u′(ct) = βREt[u
′(ct+1)]

• when the credit constraint binds, λt > 0 and ct = xt and

u′(xt) > βREt[u
′(ct+1)]

We can summarize both cases as follows:

u′(ct) = max
〈
βREt[u

′(ct+1)], u
′(xt)

〉
(10)

The credit constraint ct ≤ xt operates in two ways:
14Technically there is another Lagrange multiplier associated with the constraint ct ≥ 0, but this one will

never bind as long as the Inada conditions are satisfied, so we ignore it here.
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1. If the household is constrained at time t, it is forced to consume less than desired.

2. The credit constraint also matters, even in periods where it does not bind directly,
because of the likelihood that it will bind in the future. Technically, this is encoded in
Et[u

′(ct+1)]. The curvature of marginal utility leads the household to save more to
reduce the likelihood of being constrained in the future.

This model cannot be solved in closed form. Instead, we have to resort to numerical
techniques to characterize optimal consumption behavior. Denote ct = f(xt) the optimal
consumption rule followed by the household. It is not a function of time because the problem
is recursive and stationary. We can then rewrite the Euler equation as:

u′(f(xt)) = max
〈
βREt[u

′(f(xt+1))], u
′(xt)

〉
(11)

xt+1 = R(xt − f(xt)) + ỹt+1 (12)

The problem becomes one of solving for the function f(.). The right hand side of equation
(14) defines a functional equation:

T (f)(x) = u′−1
(
max

〈
βRE[u′(f(x+1))], u

′(x)
〉)

x+1 = R(x− f(x)) + ỹ+1

where u′−1 is the inverse of the marginal utility (assumed well defined). The optimal
consumption rule is then a fixed point of the operator T (f):

f(x) = T (f)(x)

Not surprisingly, the regularity condition that ensures that this operator has a unique
fixed point is βR < 1, i.e. precisely the requirement that the household is impatient.15

Moreover, this fixed point can be obtained by iteration. Suppose that we have a candidate
consumption function c(x) = fn(x). Then we can construct fn+1(x) as

fn+1(x) = T (fn)(x)

i.e. as the solution of:

u′(fn+1(x)) = max
〈
βREt[u

′(fn(x+1))], u
′(x)

〉
(13)

x+1 = R(x− fn(x)) + ỹ+1 (14)

The sequence fn(x) converges uniformly to f(x), i.e. limn→∞ ||fn(x) − f(x)|| = 0
where ||.|| is some Euclidean distance.

This is called Euler equation iteration.16

Figure 17 shows the optimal consumption rule for this problem for the case where
ymin > 0. It has the following properties:

15Technically, this condition ensures that the operator T (f) is a contraction mapping.
16Another approach, called value function iteration works with the value function v(xt) that solves the Bellman

equation.
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Certainty Equivalent Buffer Stock Model
forward looking much less forward looking
retirement saving households will not save for retirement at age 20
consumption and income paths independent Once you have your buffer, gc ≈ gy
interest rate elasticity small effect of interest rate
uncertainty does not matter uncertainty matter

Table 1: Comparing CEQ and Buffer Stock Models

• consumption is a function of x, not y.

• below a certain threshold level x∗, the household prefers to consume all its assets:
c = x. This is because the current marginal utility of consumption is very high.

• above x∗, the consumption rule is concave, and always below the certainty equivalent
consumption

• we can represent expected consumption growth Et∆ ln c as a function of cash on hand
x. It is a decreasing function:

– for low levels of wealth, precautionary saving dominate, cash on hand will
increase and consumption is expected to grow.

– For high levels of cash on hand, consumption grows at rate βR < 1 so cash on
hand decreases.

– The target level of cash on hand can be defined as that level that remains constant
(in expectations), i.e. the level x∗∗ such that E[xt+1|xt = x∗∗] = x∗∗. Carroll
(2012) shows that that expected consumption growth is below 1 and above βR at
the target level of cash-on-handx∗∗.17

• Even if c is a function of x, once x is close to its target, c will move together with y: if
y is expected to decline, then consumption will decline once x declines (not before):
predictable movements in y will translate into movements in c.

Figure 18 reports the dynamics of the buffer stock model, as computed by Carroll (2012).
We can summarize the two models as in table 1:

4.3 Consumption over the Life Cycle

See Gourinchas & Parker (2002) [GP]. Revisits the question of optimal consumption behavior:

• model with both lifecycle saving motive and precautionary saving motive

• structural estimation of the consumption function, i.e. not relying on Euler equation,
or reduced form consumption functions

17For more on this, see Carroll (2012), “Theoretical foundations of buffer stock saving.”
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FIGURE 1.-Consumption functions for alternative utility functions and income dispersions. 

p(x) > A(x) for x > x*, so that we have 

(13) c=f(x)=X, XsAX*, 

c=f(x) Ax, x> x*. 

The consumption function therefore has the general shape shown in Figure 1, 
shown there for y, distributed as N(A, a-), u = 100, r = 0.05, 8 = 0.10, and 
A(c) = c-. Such figures appear in Mendelson and Amihud (1982) and are 
"smoothed" versions of the piecewise linear consumption functions derived in 
the certainty case by Heller and Starr (1979) and Helpman (1981). The figure 
shows four different consumption functions corresponding to the four combina- 
tions of two values of p and o-; they all begin as the 45-degree line, and diverge 
from it and one another at their respective values of x*, all of which, in this 
case, are a little below ,u, the mean value of income, shown as a vertical line. 
The other line in the figure will be discussed below. 

The general properties of the solution are clear. Starting from some initial 
level of assets, the household receives a draw of income. If the total value of 
assets and income is below the critical level x*, everything is spent, and the 
household goes into the next period with no assets. If the total is greater than 
x* , something will be held over, and the new, positive level of assets will be 
carried forward to be added to the next period's income. Note that there is no 
presumption that saving will be exactly zero; consumption is a function of x, not 
of y, and f(x) can be greater than, less than, or equal to y. Assets are not 
desired for their own sake, but to buffer fluctuations in income. When income is 
low, there will be dissaving, and when it is high, there will be saving. 

Figure 17: Deaton (1991), figure 1

• estimation based on household level data using income and consumption expenditures

The estimation procedure consists in constructing age-profiles of consumption based on
micro data and estimating the parameters of the consumption problems that best replicate
these age profiles in the model.

4.3.1 The Model

Each household lives for T periods, works for N periods. GP truncate the problem at
retirement by writing:

U = E0[
N−1∑
t=0

βtu(ct) + βNVN (aN )]

subject to:
at+1 = R(at + yt − ct)

The function VN (.) summarizes preferences from retirement onwards, including any
bequest motive. GP assume that preferences are CRRA: u′(c) = c−θ. Further, they assume
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Figure 18: The Buffer Stock Model

that labor income yt has a transitory and a permanent component:

yt = ptµt

pt = Gtpt−1ηt

where µt and ηt are iid. GP assume that µt = 0 with some probability p. This is meant
to capture unemployment risk. One implication is that ymin = 0 so the natural borrowing
limit is amin = 0. However, with preferences that satisfy the Inada conditions, the household
will never choose to hit the borrowing limit.18 Otherwise, lnµt is N (0, σ2µ). ln ηt is also
normally distributed N (0, σ2η). The variance of these shocks and the unemployment risk are
calibrated to household level data.

The problem features two state variables: cash on hand xt = at + yt and the permanent
level of income pt (since the latter conditions how large future income will be). In general,
the complexity of numerical problems grows exponentially with the number of state variables
(curse of dimensionality). Even with modern computers and parallelization techniques, we
cannot realistically solve problems with more than 1 or 2 state variables. Fortunately, the
assumptions of the problem allow to implement a normalization that reduces the number of

18To see this, observe that if a = 0 in one period, then there is a strictly positive probability that the agent will
have zero consumption next period if the unemployment shock is realized.
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Figure 1.—A tale of two households.

age 66 characterized by &0 = 0�001
&1 = 0�071. These parameter values are those
of our baseline estimates.15 If G and Z are constant, the finite horizon problem
would converge to the infinite horizon one, as we move further away from retire-
ment. Consumption is always positive, increasing, and concave in cash on hand.
Early in life, households exhibit ‘buffer stock’ behavior: for low levels of cash
on hand, typically less than the permanent component of their income �x ≤ 1�,
households consume most, but never all, of their financial wealth, and move to
the next period with a very low level of liquid assets. At high levels of cash on
hand, the precautionary motive is small and households consume more than the
income they expect to receive (which equals 1) and so run down their assets. As
we discuss later, our baseline retirement consumption rule implies either little
illiquid wealth or a low propensity to consume from it. Thus as households age,
they must save for retirement: consumption rules decline and households accu-
mulate significant amounts of liquid wealth.

15 Other relevant parameters are �= 0�960
�= 0�514
R= 1�0344, typical income uncertainty, fam-
ily size, and expected income profile, as discussed in Sections 4 and 5.

Figure 19: Gourinchas & Parker (2002), figure 1

state variables. Define ẑ as the ratio of variable z to the permanent component of income:
ẑ = z/p. Then, we can rewrite the problem’s Euler equation as:

u′(ĉt(x̂t)) = βREt
[
u′(Gt+1ηt+1ĉt+1(x̂t+1))

]
where

x̂t+1 = R(x̂t − ĉt)/(Gt+1ηt+1) + µt+1

Notice that the consumption rules are indexed by age, since households of different ages
face different remaining horizons. So unlike the infinite horizon model, we don’t need to look
for a fixed point of the Euler equation, but iterate backwards, starting from the consumption
rule at retirement, assumed to be linear in cash on hand:19

ĉN = γ1x̂N

For any value of the parameters, the resulting consumption functions can be evaluated
numerically (see figure 19).

4.3.2 Estimating the Structural Model

Once the optimal consumption rules ĉt(x̂) are evaluated, GP construct the age-consumption
profiles C̄t by aggregating over the distribution of possible realizations of the state variables

19This implies that in principle we don’t need to ensure that the functional equation defines a contraction
mapping. If the horizon were infinite, the condition for buffer stock behavior would be βRE[(Gη)−θ] < 1
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x and p:
ln c̄t = E[ln(ĉt(xt/pt)pt)] =

∫
ln(ĉt(xt/pt)pt)dFt(xt, pt;ψ)

where dFt(., .) denotes the joint distribution, according to the model, of cash on hand
and permanent income at age t. In practice, this joint distribution is a complex object to
calculate. An important step is to construct the moments above by simulating a large number
of households (a Monte Carlo simulation). The simulated moment converges to the true
model moment as the size of the simulation increases.

The last step is in matching these simulated moments to the same moments constructed
on the household level data. The algorithm chooses the vector of structural parameters to
minimize the distance between these simulated moments and the data moments.

If we denote gt(ψ) = 1/It
∑

i ln ci,t − ln c̄t(ψ) as the distance between simulated and
data consumption at age t, then the estimator minimizes

g(ψ)′Wg(ψ)

where W is a weighting matrix and g = (g1, g2, ..., gN−1)
′.

The results of the estimation indicate the following:

• Consumption tracks income over the lifecycle

• The estimated parameters (θ and β) are quite reasonable with β = 0.96 and θ = 0.51,
withR−1 = 3.44%. The model thus features “buffer stock” behavior in the sense that
agents want to keep a constant target level of cash on hand around 1.2 times permanent
income until around age 40.

• Around age 40, life cycle considerations kick in and saving increase markedly. At
that point, precautionary saving become less relevant since the higher liquid wealth
allows the household to smooth consumption. Hence in the latter phase of active life,
households behave like CEQ consumers with consumption growth controlled by βR.

• in the early part of their lifecycle, income is growing but households are unable to
borrow much. Hence precautionary saving dominates.

• The structural parameters are well identified precisely because the turning point at
which savings increase is determined by the relative strength of the two saving motives.

The lifecycle model with uninsurable labor income risk has become a workhorse to
evaluate quantitatively various policies. For instance, Scholz et al (2006) use it to evaluate
whether Americans are saving optimally. Their model features uncertain lifetimes, unin-
surable earnings, medical expenses, progressive taxation, government transfers and social
security benefits. They use the model to compare, household by household, wealth predictions
and find that the model accounts for more than 80% of the 1992 cross sectional variation in
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Figures 3 and 4 give some evidence that consumption and income track each
other across subgroups of the population defined by education and occupation
groups. These graphs are somewhat noisy. However, despite the noise, one can
see that the occupation and education groups with the most pronounced humps
in income present the most pronounced humps in consumption. Further, we can
formally reject the null hypothesis that the consumption profiles are flat. This is
essentially a now standard test of the linearized consumption Euler equation, as
studied by Attanasio and Weber (1995), Lusardi (1996).
Our profiles differ slightly from the results of Attanasio and Browning (1995)

and Attanasio and Weber (1995). These papers employ a larger set of preference
shifters: once controlling for these, consumption is smoother and the CEQ-LCH
is not rejected. In Attanasio and Weber (1995) and in the linear Euler-equation
approach generally used in micro data, precautionary effects are omitted so that
preference shifters absorb, correctly or incorrectly, variation in consumption that
we attribute to uncertainty. Clearly, allowing for enough preference variation can

Figure 3.—Household consumption and income over the life cycle, by education group.

Figure 20: Gourinchas & Parker (2002), figure 2
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Figure 6.—Normalized target cash-on-hand by age.

households to smooth high frequency movements in income so that their behavior
more closely mimics that of certainty-equivalent consumers.
We next decompose total saving and wealth at each age into that driven by

life-cycle considerations and that additional amount driven by the presence of
uninsurable risk. Our previous discussion might lead the reader to think that
agents have no concern for retirement when they are young and no concern
for labor income uncertainty later in life. This is incorrect since consumers are
rational and perfectly foresee their retirement needs. First, we define saving in
liquid wealth as the discounted variation in financial wealth from one period to
the next:35

Si
 t = �Wi
 t+1−Wi
t�/R= �R−1�/RWi
 t+Yi
 t−Ci
 t�

Saving is equal to investment income—liquid and illiquid—plus labor income
minus consumption. From our empirical profiles in Figure 5, it follows that house-
holds save relatively little and consume roughly their income on average early
in life. Second, at the estimated parameters, we compute the consumption path,
'CLC

t (, that would occur if all income risks were pooled, so that for all households
YLC
t =E26)Yt*, but the household’s environment otherwise remains unchanged.36

Finally, we define life-cycle saving as the difference between total income and

35 The discount comes from the assumption that income is received and consumption occurs at the
beginning of the period.
36 In order to do this, we input the consumption rule at retirement as estimated in our benchmark

case. Our estimates imply that if households faced no risks after retirement, the age of death, N , is a
reasonable 87 years. That is, if we set preferences at our estimated values and N = 87, the standard
life cycle model with a certain date of death implies the same value function at retirement as we
estimate (up to a constant).

Figure 21: Gourinchas & Parker (2002), figure 6. Target cash on hand over age.

wealth. The paper uses data from the Health and Retirement Study (HRS) supplemented with
restricted social security data on earning realizations throughout life. The results indicate
that most households save enough for retirement, especially give the fact that they contribute
to social security and employer retirement plans.

5 Asset Pricing

5.1 The Canonical Model Again with Multiple Assets

We now switch focus and use the canonical model to tell us about asset prices. Let’s consider
again the canonical model. Now assume that the household can invest in two assets:

• a riskless asset that pays a riskfree return Rt+1

• a risky asset that pays a risky return Z̃t+1

The problem of the household is:

U = max{ct,ωt}E0

∞∑
t=0

βtu(ct)

subject to:
at+1 = (Rt+1(1− ωt) + Z̃t+1ωt)(at + ỹt − ct)
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TABLE 1
Descriptive Statistics for the Health and Retirement Study (Dollar Amounts in

1992 Dollars)

Variable Mean Median
Standard
Deviation

1991 earnings $35,958 $28,976 $39,368
Present discounted value

of lifetime earnings $1,718,932 $1,541,555 $1,207,561
Defined-benefit pension

wealth $106,041 $17,327 $191,407
Social security wealth $107,577 $97,726 $65,397
Net worth $225,928 $102,600 $464,314
Mean age (years) 55.7 4.7
Mean education (years) 12.7 3.4
Fraction male .70 .46
Fraction black .11 .31
Fraction Hispanic .06 .25
Fraction couple .66 .48
No high school diploma .22 .41
High school diploma .55 .50
College graduate .12 .33
Postcollege education .10 .30
Fraction self-employed .15 .35
Fraction partially or fully

retired .29 .45

Source.—Authors’ calculations from the 1992 HRS. The table is weighted by the 1992 HRS household analysis
weights.

random-effect assumptions with homoskedastic errors to estimate equa-
tion (1).

We estimate the model separately for four groups: men without a
college degree, men with a college degree, women without a college
degree, and women with a college degree. In the online Appendix B
we present details of the empirical earnings model and coefficient es-
timates from that model, and we describe our Gibbs sampling procedure
that we use to impute earnings for individuals who refuse to release or
who have top-coded social security earnings histories.6 Our approach is
appealing in that it uses information from the entire sequence of in-
dividual earnings, including uncensored W-2 data from 1980–91, to im-
pute missing and top-coded earnings.

Table 1 provides descriptive statistics for the HRS sample. Mean (me-
dian) earnings in 1991 of HRS households are $35,958 ($28,976),
though note that 29 percent of the sample was partially or fully retired
when interviewed in the 1992 HRS. The mean (median) present dis-
counted value of lifetime household earnings is $1,718,932

6 We repeated our central empirical analyses dropping individuals who refused to release
their social security records and generated results nearly identical to those reported in
the paper. Brief details are given in the sensitivity analysis, Sec. IVE.
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Figure 22: Scholz , Sheshadri & Khitatrakun (2006), Table 1

Fig. 1.—Median defined-benefit pension wealth, social security wealth, and net worth (excluding defined-benefit pensions) by lifetime earnings decile
(1992 dollars).
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Figure 23: Scholz , Sheshadri & Khitatrakun (2006), Figure 1
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TABLE 2
Optimal Net Worth (Excluding Social Security and Defined-Benefit Pensions) and the Percentage of Population Failing to Meet

Optimal Targets (Dollar Amounts in 1992 Dollars)

Group

Median
Optimal
Wealth
Target

(1)

Mean
Optimal
Wealth
Target

(2)

Percentage
below

Optimal
Target

(3)

Median
Deficit

(Conditional)
(4)

Median
Net

Worth
(5)

Median
Social

Security
Wealth

(6)

Median
Defined-Benefit

Pension
Wealth

(7)

All households $63,116 $157,246 15.6% $5,260 $102,600 $97,726 $17,327
No high school diploma 20,578 70,711 18.6 2,632 36,800 72,561 0
High school diploma 63,426 139,732 15.6 5,702 102,885 97,972 21,290
College degree 128,887 243,706 12.7 14,092 209,616 127,704 60,752
Postcollege education 158,926 333,713 13.2 23,234 253,000 129,320 152,781
Earnings decile:

Lowest 2,050 48,445 30.4 2,481 5,000 26,202 0
2nd 13,781 55,898 28.7 3,328 25,500 42,159 0
3rd 26,698 84,582 21.8 5,948 43,485 57,844 0
4th 43,566 123,441 19.4 4,730 75,000 77,452 14,830
Middle 53,709 128,285 16.9 6,979 90,000 94,929 29,497
6th 76,462 131,565 10.8 10,000 124,348 119,011 45,613
7th 80,402 154,891 9.9 11,379 128,580 133,451 56,033
8th 101,034 180,643 5.5 21,036 167,000 151,397 71,373
9th 136,075 238,186 4.4 5,206 226,000 163,639 104,657
Highest 238,073 463,807 5.4 25,855 393,000 202,659 126,998

Source.—Authors’ calculations as described in the text.
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Figure 24: Scholz , Sheshadri & Khitatrakun (2006), Table 2
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Fig. 2.—Scatter plot of optimal and actual wealth. Observed net wealth is constructed
from the 1992 HRS. Optimal net worth comes from solving the baseline model described
in the text.

A. Are Households Preparing Optimally for Retirement?

Figure 2 gives a scatter plot of optimal net worth against actual net
worth, for HRS households with optimal and actual net worth between
$0 and $1,000,000. The curved line gives a cubic spline of the median
values of observed and optimal net worth.25 If household net worth was
exactly the same as optimal net worth, the ordered pairs of actual and
optimal net worth for the HRS sample would map out the 45-degree
line. In fact, the ordered pairs cluster just below the 45-degree line. The
scatter plot gives striking visual evidence that most HRS households
have saved at or above their optimal retirement targets.

A second striking aspect of figure 2 is that it illustrates how a well-
specified life cycle model can closely account for variation in cross-
sectional household wealth accumulation. A linear regression of actual
net worth against predicted net worth and a constant shows that the
model explains 86 percent of the cross-household variation in wealth
(i.e., the is 86 percent).2R

Column 3 of table 2 shows the fraction of HRS households with wealth
deficits, broken out by educational attainment and lifetime earnings
deciles. Overall, 15.6 percent of the HRS sample has deficits (their net
worth, excluding defined-benefit pensions and social security, is less than

25 The median band is smoothed by dividing households into 30 groups on the basis of
observed net worth. We use Stata’s “connect(s) bands(30)” option for the figure.
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Figure 25: Scholz , Sheshadri & Khitatrakun (2006), Figure 2
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This problem features two control variables: how much to consume ct, and how much to
invest in the risky asset (ωt). Following the same steps as before (Bellman equation, first
order condition, envelope theorem), one can show that the following conditions hold:

u′(ct) = βEt

[
u′(ct+1)(Rt+1(1− ωt) + Z̃t+1ωt)

]
Rt+1Et

[
u′(ct+1)

]
= Et

[
u′(ct+1)Z̃t+1

]
The first condition is simply the usual Euler equation. The second one is an asset pricing

condition. In fact, combining the two equations, for any asset Z̃i,t, optimal portfolio allocation
requires that

1 = Et

[
β
u′(ct+1)

u′(ct)
Z̃i,t+1

]
How should we interpret this condition? Recall that we can write, for any two random

variables: E[XY ] = E[X]E[Y ] + cov(X,Y ). Substituting, we obtain:

1 = Et

[
Mt,t+1Z̃i,t+1

]
= Et [Mt,t+1]Et

[
Z̃i,t+1

]
+ covt

(
Mt,t+1, Z̃i,t+1

)
Et

[
Z̃i,t+1

]
= Rt+1

(
1− covt

(
Mt,t+1, Z̃i,t+1

))
where we defineMt,t+1 = βu′(ct+1)/u

′(ct), i.e. the intertemporal marginal rate of substi-
tution and the last line uses the fact that, from the Euler equation,

Et [Mt,t+1]Rt+1 = 1

The interpretation is now quite straightforward: an asset requires a high expected return
if it covaries negatively with the pricing kernelMt,t+1, i.e. if the return on the asset is low
whenM is high. Now if we go back to the definition of the IMRS, we see that it is high
when consumption is low. In other words, an asset requires a premium if it offers a poor
return precisely at times when consumption is low.

The required excess return satisfies

Et

[
Z̃i,t+1

]
−Rt+1 = −Rt+1covt

(
Mt,t+1, Z̃i,t+1

)
5.2 Stock Prices: a Present Value Formula

We can use the previous pricing equation to evaluate the value of a stock. Suppose we have
an asset with price Pt at time t, resale value Pt+1 at time t+ 1 and a dividend dt+1 in period
t+ 1. Then the return to the asset is:20

Zt+1 =
Pt+1 + dt+1

Pt
20Here Pt is the price after the dividend in period t has been paid, i.e. an ex-dividend price
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Substituting into the asset pricing equation, and solving forward, we obtain:

Pt = Et

[ ∞∑
s=1

Mt,t+sdt+s

]

in other words, the stock price is the expected PDV of future dividends, evaluated using
the pricing kernel defined recursively asMt,t+s =Mt,t+s−1Mt+s−1,t+s.

5.3 The Equity Premium

Consider the pricing equation derived earlier:

1 = Et

[
Mt,t+1Z̃i,t+1

]
Now, let’s log-linearize in the case where utility is CRRA, assuming that consumption

growth and asset returns are jointly lognormally distributed:

1 = exp(−ρ)Et [exp(−θ∆ ln ct+1) exp(lnZi,t+1)]

1 = exp(−ρ) exp (−θEt [∆ ln ct+1] + Et [lnZi,t+1] + 1/2vart (−θ∆ ln ct+1 + lnZi,t+1))

0 = −ρ− θEt [∆ ln ct+1] + Et [lnZi,t+1] + 1/2vart (−θ∆ ln ct+1 + lnZi,t+1)

where the last line takes logs. Now taking the difference between a risky and the riskess asset,
we obtain:

Et [lnZi,t+1]− rt+1 + 1/2vart(Zi,t+1 −Rt+1) = θcovt (∆ ln ct+1, lnZi,t+1 −Rt+1)

Et [lnZi,t+1] + 1/2vart(Zi,t+1 −Rt+1)− rt+1 = θcovt (∆ ln ct+1, lnZi,t+1 −Rt+1)

The last term on the left hand side in this equation is a Jensen’s inequality term. The
left hand side measures the equity premium. Mankiw and Zeldes estimate that it is about 6
percentage points. The standard deviation of consumption growth is 3.6 percentage points
and the standard deviation of the excess return is 16.7 percentage points. The correlation of
consumption growth and the excess return is 0.40. It follows that the right hand side is equal
to θ × 0.40× 3.6× 16.7. To match the equity premium, the CRRA coefficient needs to be
about 25.
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