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1 Introduction

Where the second part of econ202A fits?

e Change in focus: the first part of the course focused on the big picture: long run growth,
what drives improvements in standards of living.

e This part of the course looks more closely at pieces of models. We will focus on four
pieces:

consumption-saving. Large part of national output.

investment. Most volatile part of national output.

open economy. Difference between S and [ is the current account.

financial markets (and crises). Because we learned the hard way that it matters a
lot!

2 Consumption under Certainty

2.1 A Canonical Model

A Canonical Model of Consumption under Certainty

e A household (of size 1!) lives T" periods (fromt = 0tot = T — 1). Lifetime
preferences defined over consumption sequences {c; }72_;:

T-1

U= Buc) (1)

t=0

where 0 < 8 < 1 is the discount factor, ¢; is the household’s consumption in period
t and u(c) measures the utility the household derives from consuming ¢; in period ¢.
u(c) satisfies the ‘usual’ conditions:

- u'(e) >0,
u’(c) <0,

lim, o u/(c) = o0
=0

= lime—o0 v/(c)

e Seems like a reasonable problem to analyze.



2.2 Questioning the Assumptions

Yet, this representation of preferences embeds a number of assumptions. Some of these
assumptions have some micro-foundations, but to be honest, the main advantage of this
representation is its convenience and tractability. So let’s start by reviewing the assumptions:

e Uncertainty. In particular, there is uncertainty about what 7" is. Whose 1" are we
talking about anyway? What about children? This is probably not a fundamental
assumption. We will introduce uncertainty later. This is not essential for now.

e Aggregation. Aggregate consumption expenditures represent expenditures on many
different goods: ¢; = Zz P; ¢Ci ¢ over commodities ¢ (where I am assuming that
aggregate consumption is the numeraire). If preferences are homothetic over individual
commodities, then it is possible to ‘aggregate’ preferences of the form u(c, p) into an
expression of the form u(c) where ¢ = p.c

e Separation. Other arguments enter utility: labor supply etc... The implicit assumption
here is that preferences are separable over these different arguments: u(c) + v(z).

e Time additivity. The marginal utility of consumption at time ¢ only depends on
consumption expenditures at that time.

— What about durable goods, i.e. goods that provide utility over many periods?
Distinction between consumption expenditures (what we pay when we purchase
the goods) and consumption services (the usage flow of the good in a given
period). The preferences are defined over consumption services but the budget
constraint records consumption expenditures. Stock-flow distinction.

— What if utility depends on previous consumption decisions, e.g. u(c, H;) where
H, is a habit level acquired through past consumption decisions? Habit for-
mation would correspond to a situation where 0H;/dcs, > 0 for s < t and
0?u/(0cOH) > 0. In words: past consumption increases my habit, and a higher
habit increases my marginal utility of consumption today. Internal habit.

— What if utility depends on the consumption of others, e.g. u(c;, Cy) where
C; is the aggregate consumption of ‘others’ (catching up with the Joneses).
External habit. As the name suggests, external habit implies an externality of my
consumption on other people’s utility that may require corrective taxation).

o Intertemporal Marginal Rate of Substitution. Consider two consecutive periods ¢
and t + 1. The IMRS between ¢ and ¢ + 1 seen from period 1 is 51w/ (¢ y1)/ 81 (cy).
The same IMRS seen from time ¢ is Su’(cy11)/u’(¢¢). The two are equal! Key property
that arises from exponential discounting (Strotz (1957)). Example: 1 apple now, vs 2
apples in two weeks. Answer should not change with the time at which we consider
the choice (period 1 or period t). Substantial body of experimental evidence suggests
that the present is more salient then exponential discounting.



Suppose instead that U = u(co) + 6 31" Blu(c;) with 0 < < 1 represent the
lifetime preferences of the household in period 1. Notice that # only applies to future
utility (salience of the present). quasi-hyperbolic discounting (see Laibson (1996)).

The problem is that preferences become time-inconsistent: next period, the household
would like to re-optimize if given a chance. Not the case with exponential discounting
(check this):

t—1 T—1
mal’ctyctlevncT—l Z BSU(C:) + Z BSU(CS)
s=1 s=t

2.3 The Intertemporal Budget Constraint

Since there is no uncertainty, all financial assets should pay the same return (can you explain
why?). Let’s denote R = 1 + r the gross real interest rate between any two periods, assumed
constant. The budget constraint of the agent is:

agy1 = Rlas +ye — )

at denotes the financial assets held at the beginning of the period, and ¥, is the non-financial
income of the household during period ¢. [Note that this way of writing the budget constraint
assumes that interest is earned ‘overnight’ i.e. as we transition from period ¢ to ¢ + 1.]

We can derive the intertemporal budget constraint of the household by solving forward for a;
and substituting repeatedly to get:

T-1
aw=R1lar—y+co=..= Z Ry — y) + R Tar
t=0
Since the household cannot die in debt 7", we know that a7 > 0 and the intertemporal budget
constraint becomes:
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Interpretation:

o the present value of consumption equals initial financial wealth (a) + present value of
human wealth (3"/_' R~*yy).

e the term on the right hand side is the economically relevant measure of total wealth:
financial + non-financial.

e the combination of time-additive preferences and an additive intertemporal budget
constraint is what makes the problem so tractable (Ghez & Becker (1975))



2.4 Optimal Consumption-Saving under Certainty

Optimal Consumption-Saving under Certainty.
The problem of the household is to maximize (1) subject to (2):

T-1
t
max Bu(er)
{es 3y ;
s.t.

~

1 T-1
R7te; < ag+ Z Ry,

t t=0

Il
=)

We can solve this problem by setting-up the Lagrangian (where A > 0 is the Lagrange
multiplier on the intertemporal constraint):

-1

T—1 T—1
L= Z ,Btu(ct) + A (ao + Z Rty — Z tht>
t=0 t=0

t=0

The first order condition for ¢; is:
u'(cr) = (BR) ™ A

[Note: from this you should be able to infer that the IBC will hold with equality). Can you
see why?]
Interpretation:
u'(ce) = (BR)™ A

[ captures impatience, i.e. the preference for the present. Makes us want to consume
now.

e R determines the return on saving. A higher R makes us want to consume later (is
that really the case? More later....)

e Marginal utility will be decreasing over time if 3R > 1 and increasing otherwise.

e Since marginal utility decreases with consumption, this implies that consumption will
be increasing over time when SR > 1 and decrease otherwise.

e When SR = 1 the two forces balance each other out and consumption becomes flat.

e Note that this gives us some key information on the slope of the consumption profile
over time, but not on the consumption level.



2.5 A Special Case: fR =1
U/(Ct) = A

This implies that consumption is constant over time: ¢; = ¢. Substitute this into the intertem-
poral budget constraint to obtain:

T-1 T-1
1-RT_ 1-pT
—t _ _— _— ~t
t,OR C=1_pic= 1_56_a0+tEOR Yt

Observe:
e consumption is a function of total wealth.

e the marginal propensity to consume is (1 — 3)/(1 — 37 and converges to 1 — 3 when
the horizon extends (1" — c0).

e if 5 = 0.96 (areasonable estimate), this gives R = 1/0.96 = 1.0416. Then we should
consume about 4% of total wealth every period.

2.6 The Permanent Income Hypothesis

Friedman’s (1957) Permanent Income.
T—1
]_ —
Cc = BT ag + Z Rityt
1-5 t=0

e This is Friedman’s permanent income hypothesis. Individual consumption is not
determined by income in that period, but by lifetime resources, unlike Keynesian
consumption functions of the form ¢; = a + by;.

e Friedman actually defines permanent income as the right hand side of this equation.
This is the annuity value of total resources.

e This implies that consumption should not respond much to transitory changes in
income, since these will not affect much permanent income, but should respond if
there are changes in your permanent income.

— you earn an extra $200 today
— you just got tenured and learn that starting next year, your income will double.

— you learn that you won $10m at the state lottery



2.7 Understanding Estimated Consumption Functions

Keynes (1936) argues that ‘aggregate consumption mainly depends on the amount of aggre-
gate income,” ‘is a stable function,” and ‘increases less than proportionately with income.’

In other words, Keynes argues for a consumption function of the type ¢; = a + by;.

Empirically, it matters whether we look (a) in the cross section or (b) in the time series.
This looks quite different from Friedman’s permanent income which we can write as

ct = y¥ where y/l is simply permanent income.

Yet, Friedman’s PIH can account for the empirical observations. Observe that we can
write y; = yf + ytT where ytT is the transitory component of income. An OLS regression of

consumption on income yields:

cov(cy, ye)  cov(yl,ye)  var(yl)

h = = = <1
var(y;) var(y;) var(y;)
a = E(Ct) - bE(yt) = (1 - b)E(yf)
Cit Ct
45° 45°
whites
blacks
in the cross section in the time series
0 Yit 0

Figure 1: Keynesian consumption functions and the PIH

e In the cross section: more variations from yiTt: lower b.
I

e in the time series, more variation from y;: higher b

e in the cross section: lower intercept a if lower E(y]”)

Yt



2.8 The LifeCycle Model under certainty

Modigliani and Brumberg (1954) consider the lifecycle implications of the previous model.
Suppose that people live 1" periods (from 1 to 7') and that 3 = R = 1. (Note: this is a
stronger assumption than SR = 1)

The PIH model tells us that consumption is constant and equal to the permanent income
of the agent: ¢ = ¢ = y*.

This is irrespective of the income profile {y;} over time. Suppose now that the agent
works for N < T periods, earning income y, then retires.

The household saves y — ¢ when working, then dissaves —¢ when retired.

human wealth
y
. total wealth
¢ e
N wealth
|
|
|
|
N T time N T time

Figure 2: The Baseline Life-Cycle Model

Equations for the simple Modigliani-Brumberg (1954) lifecycle model:

_ N
¢ = =
Ty
T—-N
ag = t y fort< N
N
a; = ?(T—t)y for N <t<T
hy = (N —t)y human wealth

N
wy = at—i-ht:?(T—t)y forallt <T



Assume there is no growth. Then, we have the following (aggregating across cohorts):

N
7 = —y(T+1
w 2Ty( +1)
_ N N
= —y(N+1) : a=-—y(T—N
h 2Ty( +1) ; a 2Ty( )

Note:

e The household runs total wealth to 0

e Human wealth runs out at £ = N. It is supplemented by financial wealth
e We can have positive financial wealth even if there is no bequest motive.

e The ratio of human to financial wealth h/a does not depend on income (it is equal
to(N+1)/(T—N).

e The details of the social security system matter. This describes a fully funded system
(or even more precisely, what should happen if there is NO social security system and
no bequest motive). What if we have a society where the young take care of the old
(China); or an unfunded system where the government taxes the young to support the
old? What happens to

— consumption profiles?
— income?

— private saving?

2.9 Saving and Growth in the LifeCycle Model
How does growth affect saving in the lifecycle model?

e Start with zero growth: the age-profile = cross-section. Aggregate wealth is constant
and aggregate saving equals 0. The young save, and the old dissave

e population growth: more young saving, so saving increases with population growth.

e productivity growth: more complex and depends on how productivity growth affects
each cohort’s income:

— If productivity growth is across cohorts (i.e. each cohort’s income is constant but
younger cohorts have a higher income profile) then productivity growth increases
saving. (Why? b/c the young save more than the old dissave)

— but instead if productivity growth increases income over a worker’s lifetime, then
young workers may decide to borrow against higher future income in middle age.
In that case, faster growth can reduce savings.
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Figure 3: The Life-Cycle Model when Income grows over time

2.10 Interest Rate Elasticity of Saving

The response of consumption and savings to changes in interest rates is an important question.
Think about:

e the transmission of monetary policy (changing the real interest rate)

e changes to the tax code that affects rates of returns on savings. you have seen in the
first part of this course how changes in savings can affect growth rates temporarily (if
growth is exogenous) and potentially permanently (if growth is endogenous)

Consider the first-order condition again:
u'(er) = (BR) ™' A

Rewrite it in two consecutive periods and eliminate A. This is the Euler equation under
certainty:

u'(cr) = (BR) u'(coy1)

Consider CRRA preferences: u(c) = ¢'~%/(1 — ). [We have already seen these preferences
when solving the Ramsey-Cass-Koopmans problem: € represents both the CRRA coefficient
and the inverse of the (IES).]

Substitute to get:
civ1/cr = (BR)Y’

e if 1/0 = 0 (Leontieff) then ¢, is flat regardless of the interest rate. No substitutability
e for 1/6 < 1: weak substitution effects

e for § = 1 income and substitution effects cancel out (log preferences)

10



e for 1/6 > 1: strong substitution effects

e if 1/6 — oo then ¢; becomes very responsive to the interest rate. In the limit, con-
sumption growth becomes so responsive that the interest rate /2 will have to stay ‘close’
to 1/ to ensure that consumption growth does not become too extreme.

crs1/cr = (BR)M°

In general, consumption growth should be responsive to changes in the interest rate. On can
rewrite:
dIn(cirr1/er) = (1/0)dIn R = (1/0)dIn(1 +r) ~ (1/0)dr

An increase in the real interest rate by 100bp should increase consumption growth by 1/0%.

But the analysis is incomplete: we need to figure out by how much consumption itself
changes.

What about the overall effect?
To simplify things, let’s consider first a two-period problem (with ag = 0)

cfeo = (BR)Y

C1 Y1
o+ = = + =

Let’s start with a simple case where y; = 0:
We have:

e a substitution effect. Keeping the utility level constant, the change in interest rate leads
us to substitute consumption today for consumption tomorrow: cg falls, c; increases.

e anincome effect: the budget line rotates around (yo, 0). This means more consumption
can be afforded in each period. This increases cg and c;.

The effect on ¢; is unambiguous. The effect on ¢ is ambiguous. When 1/6 > 1 the
substitution effect dominates so that ¢ falls.
Mathematically:
co(1+ (BR)Y?/R) = yo
2.10.1 The 2-period case with y; =0
Now, let’s consider what happens when y; # 0

e the budget curve rotates around (yo, y1).

e in addition to the income and substitution effects, there is a wealth effect: future income
is worth less to the household. This reduces ¢y and c;.

11



Figure 4: An increase in interest rates when y; = 0

o the net effect often depends on whether the household is a net borrower or lender.

— if cg = yo and c¢; = y; then there is no income and wealth effect (why? because
the initial consumption bundle remains on the new budget line). So there is only
a substitution effect and ¢ falls.

— if the household is initially a saver (i.e. ¢y < yo) then the income effect dominates
the wealth effect and the overall effect on ¢ is indeterminate

— if the household is initially a borrower (cop > yg) then the income effect is weaker
than the wealth effect. Therefore ¢ falls.

Mathematically:
co(1+BYRYTY) = (yo + 1/ R)

2.10.2 The 2-period case with y; # 0 and ¢y = yo

The substitution effect is the only effect. ¢ falls.

2.10.3 The 2-period case when ¢y < yo (lender)

Ambiguous. Income effect stronger than wealth effect.

12



Figure 5: An increase in interest rates when ¢y = yg and ¢; = 41

2.10.4 2-period case when ¢y > 1y (borrower)

wealth effect stronger than income effect. cg falls.

Savings and Interest Rates: Recap:

The literature often considers the case § = 1 as a benchmark, where income and
substitution effects cancel out, leaving the saving rate independent of the interest rate;

Furthermore, empirical estimates of the elasticity of intertemporal substitution suggest
relatively low numbers for 1/6, especially since there are also income and wealth effects.

It is tempting to conclude from this that (a) the slope of consumption growth and (b) the
level of consumption will be largely unaffected by changes in the interest rate. However, this
answer can be misleading for a number of reasons:

e lifetime horizon. But even if the IES is small, it can have a large impact over a lifetime
(Summers 1981).

e This omits the wealth effect. Even if income and substitution effects cancel out, a
change in interest rates affects human wealth, and this leads to a change in consumption
in the PIH-LC model.

o Finally, the nature of the change in interest rates matters. For instance, a change in
interest rates due to tax changes may be offset somewhere else to leave government

13



[
i
i
|
|
|
i
|
|
|
i
|
i
L

ho =yo +y1/R

o

Figure 6: An increase in interest rates for a saver (cy < o)

revenues unchanged. In that case, there is no income effect and only the substitution
effect. This might not be very helpful if the IES is small anyway.

2.11 The LifeCycle Model under Certainty Again

Consider now the case where R and 3 differ from 1. In addition, suppose that ag = 0 and
that y is constant as before.
The Euler equation with CRRA preferences implies:

c = (BR)t/aco

Substituting into the budget constraint, we obtain:

1 — (BR1-9)1/6 T-1
“© = 3 <ﬁR1—9)T/9 Ry,
~(BRTO)TT0 2
1— (IBRI—O)I/G 1— RN
co = Yo
1— (BRl_G)T/e 1— R1

Suppose that SR > 1 so that consumption grows over time, even it ¢ is low. If the horizon
T is long enough relative to the working period, consumption must be much higher at the end

14



Jo co ho =yo +y1/R

Figure 7: An increase in interest rates for a borrower (co > o)

of life than at the beginning: the agent must accumulate a large stock of wealth. Aggregate
wealth and saving may be highly responsive to changes in interest rates. See Summers 1981.

3 Consumption under Uncertainty
Last class we looked at the consumption model under certainty. The model provides important
insights:

e consumption is a function of total wealth (permanent income)

o the slope of the consumption profile is controlled by the discount rate, the interest rate
and the intertemporal elasticity of substitution

e in a lifecycle environment, there is a substantial amount of life-cycle wealth accu-
mulation. In the simple model, the amount of wealth is a/y = N/(2T)(T — N) =
40/(120)(20) = 800/120 = 6.66

o the elasticity of aggregate saving to the interest rate is complex.

The model needs to be extended to allow for uncertainty. Precautionary saving is another
reason why households decide to save. We start with the canonical model, augmented for
uncertainty.

15



TABLE 1 — THE INTEREST ELASTICITY

OF AGGREGATE SAVINGS

Value of r
.04 .06 .08

¥y=.5

n, 3.71 2.26 2.44

S/WL 121 274 451
y=0

n, 3.36 1.89 1.87

S/WL 068 .142 21C
y=-—.5

n, 3.09 1.71 1.54

S/WL .049 .096 13§
Y=

n, 2.87 1.59 137

S/WL 038 073 .09¢
y=-2

n, 2.38 1.45 12z

S/ WL 028 .048 06"
y=-5

n, 741 1.09 1.18

S/wWL 014 .019 .02¢

Note: The calculation assumes n=.015, g=.02, T’
T=40, and 6=.03. The savings rate is measured

fraction of labor income.

Figure 8: Table 1 from Summers (1981)

3.1 The Canonical Model
3.1.1 the set-up

The household has the following preferences over consumption sequences:

U=F

> Blules)|Q0
t=0

Notice two differences with the model under certainty:

1. First I assume that the horizon is infinite. This is mostly to show you how to use solve
the model in that case. Nothing substantial rests on that hypothesis and I will point out
as we go where things might be different if we have a finite horizon. Formally, you
may think that households care about their offsprings and apply the same discount rate.

16



2. The term E/[.|€] captures expectations conditional on information available at time
t = 0. This information set is denoted €2y. This is also an important assumption. It
implies that preferences are separable over states and over time.. To see this, suppose
that there are S; possible states of the world in period ¢ and that each of them has
probability (as of time 0) given by 7, ;. Then we can write the utility as:

U=> Y B'mulcs)

t=0 s€S;

This double separation imposes strong structure on preferences, but it simplifies tremen-
dously the analysis.

3. To lighten the notation, I will indifferently write E[.] or E[.|€] to indicate conditional
expectation as of time .

The household budget constraint takes the same form as before, except that now, I will
suppose that households face some uncertain interest rate Rt+1 and an uncertain future
income . In this notation, the "indicates that a variable is stochastic (as seen from previous
periods). The budget constraint then takes the form:

a1 = Repi(ar + G — ) 4)

3.1.2 Recursive Representation

The problem is to maximize (3) subject to (4), and any other restriction on consumption
and asset choices, for a given initial level of wealth ag. For instance, we know that we only
consider positive consumption: ¢; > 0.

We have also already discussed the fact that the household will not be allowed to run
Ponzi-like schemes:
lim ATar >0
T—o0

This constraint holds in the uncertain case, along all possible consumption sequences (tech-
nically, it holds almost surely).! But there might be other constraints on assets holdings. For
instance, the household may be prevented from borrowing beyond a certain limit:

ag > a

At time t, a; is a state variable of the household consumption problem, in the sense that
it is pre-determined by the previous actions of the households and is beyond its control.

"t is not sufficient that the No-Ponzi condition holds in expectation, that is Fo [limT_mo ,BTaT} > 0. If this
were the case, then there would be possible paths with non-zero measure where the No-Ponzi condition would
be violated. Along these paths, lenders would have to agree to provide an infinite level of consumption to the
household. Note also that if the NPC holds a.s., then it holds in expectation, while the reverse is obviously not
true.

17



We are going to assume that income and return realizations are iid, so that §; and R; are
not state variables of the household problem. This is mostly to keep notations simple. It
would be quite straightforward to extend the set-up to a case where y and R have a Markov
structure.

Remark 1 In some situations, it is easier to use cash-on-hand x; as the state variable, where
¢ is defined as : xry = a; + Yr. x; represents the resources available for consumption
and saving to the household, after the realization of current income. The budget constraint
becomes:

Top1 = Resr (2 — ¢) + G

Since financial assets a; are the sole state variable, we can write the value function that
maximizes the utility of the agent as a function of the state variable a:

v(ag) = maw(e,y Eo | Bulc)
=0

Given the nicely recursive structure of the problem, we write the Bellman equation as
follows. Suppose that the level of assets is a in a given period. Consumption that period
must satisfy:

v(ay) = mavegec, ulcr) + BEv(air1)]
s.t.
a1 = Repi(ag + 9 —cr)

where C; denotes the set of permissible consumption choices at time ¢. Notice that it is
the same value function that enters on both sides of this equation. So, one way to think about
the household problem is that the Bellman equation defines the value function as fixed point
of a functional equation. There are various theorems that establish existence and uniqueness
of this fixed point, when the Bellman equation is well-behaved -as is the case here.

Remark 2 [f the functional equation is contraction mapping, then the Bellman equation has
a unique solution AND this solution can be found by iterating on the value function. This
provides a convenient (if not especially rapid) way to characterize numerically the value
function (value function iteration).

3.1.3 Optimal Consumption and Euler Equation

We start by assuming that the solution is interior to the set C;. The first-order condition of
the above problem yields:

u'(cr) = BEV (ap1) Rey1]

18



Let’s now consider what happens when there is a small change in a; on the household
value function v(a;). To calculate v’(ay), let’s take a full derivative of the Bellman equation.?
The total variation is:

v (ar)da = ' (¢;)dey + BE [V (ags1) Rev1 (da — dc)

where dc denotes the change in optimal consumption for a given small change in a. Regroup-
ing terms, we obtain:

' (ag)da = (v (ct) — BE[V (ar41) Resa))de + BE (ag1) Riga]da

The first term on the right hand side is zero from the first-order condition of the problem. So
we are left with:

v'(ar) = BE (ar41) Rig]

This is a straightforward application of the Envelope Theorem.
Combining the first order condition and the Envelope theorem, we conclude that:

u'(cr) = v'(ax)

Substituting back into the first order condition, we obtain the well-known Euler Equation
under uncertainty:

ul(Ct) = BE; [Rt-l—lul(ct—l—l)] (5

What is the intuition for the Euler equation? A variational argument might help. Suppose
that we reduce consumption from the optimal path in period ¢ by €, and increase consumption
by f{tHe next period (so that we are back on the optimal consumption path after period ¢ + 1).
The marginal disutility (as of time ¢) of reducing consumption in ¢ is u/(c;)e. The marginal
increase utility from higher consumption in ¢ 4+ 1 (as of time t) is SE; [Rt+1u/ (¢t+1). Fora
small e the two should be equal (otherwise the proposed consumption is not optimal to start
with).

Note that the discount rate 5 and the interest rate Rt+1 still play opposing force on
consumption growth, so the insights from the certainty case do carry over to the uncertain
case. But we now also have to take into account uncertainty over future returns and future
marginal utility.

Remark 3 The derivation above assume that consumption is interior. What would happen if
consumption is at the boundary. For instance, suppose that we impose the conditions that
0 < ¢ < a+y (how should we interpret this condition?). What form does the Euler equation
take?

>We are assuming that the value function is differentiable, which is not always the case. See Stokey, Lucas
and Prescott (1983) for more details on this.
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3.2 The Certainty Equivalent (CEQ)

The Euler equation provides some important insights into consumption behavior, but in its
general form, it is not very tractable. We now make a number of simplifying assumptions,
following Hall (1978).

First, we assume that there is no uncertainty in interest rates, so Rt = R. Moreover, we
assume that there is no tilt in consumption profiles, that is SR = 1.

Second, we will consider a very particular form of preferences:

u(c) = ac —yc?/2; v >0,a>0

In other words, preferences are quadratic over consumption. These preferences are very
weird from a number of points of view:

e even if a > 0, utility turns negative for sufficiently large consumption

o these preferences admit negative consumption (they definitely violate Inada’s condi-
tions)

So why would we want to make these crazy assumptions? Two possible justifications are:

e we could think of these preferences as a second order approximation of utility for more
general utility functions. If we think about it this way, then it would suggest that this
may not be such a bad approximation for relatively small changes in consumption over
time.

e these preferences have the important property that marginal utility is linear, or equiva-
lently that the second derivative is constant: u'(¢) = a — yc and u”(¢) = —~.

Let’s make these two assumptions and substitute into the Euler equation (5) to obtain:

cr = Eifciy] ©)

The stunning result here is that consumption follows a Random Walk. This means that
changes in consumption are unpredictable. To see how stunning it is, recall that if we had no
uncertainty (and SR = 1), then we would get

u'(ey) = U/(Ct+1)

and so consumption would be constant over time, and therefore entirely predictable. Instead,
once we introduce uncertainty, consumption becomes entirely unpredictable!

To see what is going on, it helps to solve for the level of consumption in the CEQ case.
To do this, let’s first derive the Intertemporal Budget Constraint. First recall that the dynamic
budget constraint is:
agy1 = R(as + ¢ — )
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Let’s solve this sequence forward for a given sequence of consumption and income realization:
oo
ag = R_l(al +co—yo=..= ZR_t(Ct - jgt) + lim R_T(IT
o T—o00
With the No-Ponzi condition, the last term has to be positive, so the intertemporal budget

constraint takes the form:
oo [ee]
Z R7e; <ag+ Z R,
0 0

Notice that this intertemporal budget constraint does not have an expectation term: it has
to hold along any possible realization of income and consumption: it holds almost surely.
But if it holds almost surely, then we are allowed to take expectations and the following also
holds:

EO[Z R <ag+ Ey [Z R™'g)
0 0

The next step is to observe that we can move the expectation inside the summation, and
use the fact that under the random walk hypothesis, the following holds:

E()Ct = E()Etflct = E(]Ct,1 = ... =

where the second term follows from the Law of Iterated Expectations, the third one from the
fact that consumption follows a random walk at ¢ and the last one from iterating the argument.
It follows that consumption at time ¢ = 0 must satisfy:

1

—t~
COl—i_R_l ag + E() [g R yt]

> R,

0

c = (1-08) <a0+Eo

)

where we used the assumption that R~' = /3 and the definition of x; in the second line.
What this tells us is that consumption follows the PIH in expectation. The term in parenthesis
on the right hand side is expected total wealth, where the expectation is over future labor
income.

This is why the model is called the ‘certainty equivalent’ model: as far as consumption
decisions are concerned, the household behaves as if future income was certain and equal
to its expected value. The source of this behavior can be traced back to the assumption of
quadratic utility. Note that the Euler equation in the CEQ model is:

¢t = Eyep
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what this tells us is that the household is smoothing consumption, but taking future consump-
tion as if it were certain and equal to its expected value. But if you retrace your steps, you
will see that this result arises from the Euler equation in general form:

u'(cr) = By (ce11)

and the fact that marginal utility is linear when utility is quadratic: u/(c) = a — ye.
Anticipating on the next lecture, this tells you that this result will not hold in the more
general case where marginal utility is not linear.

Why are changes in consumption unpredictable, while the consumption level itself seems
to follow a minor modification of the PIH? To see what is going on, consider consumption in

two consecutive periods, ¢ and ¢ + 1:
o
)
s=t

Z R_(S_(t+1))gjs] )

s=t+1

c = (1-0) (at+Et

1 = (1-5) (at+1 +Eiq

Take the difference and substitute a;+1 = R(a¢ + g — ¢;) to obtain:

cy1—¢ = (1-7) <Gt+1 —a; + Z R-G-p, g, — ZR s=(¢ ))Etys>

s=t+1 s=t

= (1-58) <R(at TP — ) —ar + Z RC-UIE, g, — ZR ° (t))Etys>

s=t+1 s=t

= (1-6) ((R—l)at+Ryt Re; + R Z R B, — ZR (o=

s=t+1 s=t
= (1- ( RZR “Etysmzza Et+1ys)
s=t+1 s=t+1
using the expression for ¢; and the fact that SR = 1, we obtain finally:
oo
- =(R-1) Y R CNE 5, — i) (7
s=t+1

Notice that the term in the summation on the right hand side of (7) is Ey1ys — E:ys, that
is, the revision in expectations about future income. Of course, this revision is unpredictable
as of period ¢, otherwise it would already have been incorporated in the current expectation
Etgs !
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This gives us a very nice result: the change in consumption is related to the news the
household receives about future income. We will see also that it provides us with a way to
test the certainty equivalent model.

Remark 4 You can check that if you take expectations as of time t on both side of this
equation, you recover Eyciy1 — ¢y = 0.

Example 1 Consider the case where income follows an AR(1) process:

Ytt1 = pYe + M3 0<p <1

Then we can easily check that Eyij; = p®*~'4;. Substituting back into (7), we obtain after
some easy manipulations:
1-p

Ci+1 — Ct = mnwl

Since p < 1, ¢py1 — ¢¢ < 1444, that is, consumption in general responds less than 1 for I to
a change in income. The case where consumption moves 1 for 1 is when p = 1, i.e. income
itself is a random walk.

3.3 Tests of the Certainty Equivalent Model
3.3.1 Testing the Euler Equation

The literature up until Hall (1978) used to attempt to derive closed form solution for
consumption (i.e. a consumption function) and estimate it. But a closed form solution
for the consumption function is often not available. So instead, the literature would try to
identify the determinants of consumption and estimate empirically the relationship between
consumption and its determinants. This would not allow for a rigorous test of the theory. In
addition, the regression typically faced a serious problem of identification since income (the
most common right hand side variable) is not exogenous.

Instead, Hall argued that we can test the theory by directly testing the first-order condition
of the model, i.e. the Euler equation. Under rational expectation, any variable can be
expressed as the sum of its conditional expectation and an innovation term, orthogonal to
any information available at time %:

Ct+1 = EtCt-H + €t+1 = Ct + €t4+1

where Ee;1 = 0 and the second equality uses (6). So the theory implies that c¢; contains all
the relevant information necessary to predict ¢y 1.

Under the null hypothesis that the theory is correct, a regression of the form:

ct+1:a+b ct+ ¢ $t+5t+1 (8)
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where z; is any variable available at time ¢ to the household should yield:
a=0, b=1; ¢=0

What is important in that regression is that it does not matter whether y; is exogenous or
not (the key problem with the consumption function estimation approach). The key test is
whether ¢ = 0 or not. If we find some variables, known as of time ¢ that can help predict
next period’s consumption after controlling for current consumption, then the theory has to
be incorrect.

Remark 5 Notice that the theory does not say that consumption should not react to current
income. In other words, if we run the regression

cr1=a+b c+cat+d Yy e
there is no presumption that d should be equal to 0.

Remark 6 Notice that given (7), we know that

o0

er1=(R—1) Z R™C"(Ey10s — Eus)
s=t+1

One could think that this would provide another way to test the theory. For instance, when
income follows an AR(1) process as above, we know that the consumption innovation is given

by:
1-p
€t+1 — 1— p/877t+1

so the innovation to consumption €, 1 and the innovation to income 1, are linked in a very
precise way. However, this could be exploited only if the household learns about the change
in its income as it happens. If instead, the household learns about a change in its income
before it is realized, this is when consumption will change, and not when the actual change in
income occurs. Unless the econometrician has information on when the information becomes
available to the household (more on this below), then the relationship above will not be
terribly useful. Testing the first order condition remains valid, however, since any information
known at time t to the household should not help predict future consumption.

Hall (1978) tests the CEQ model using aggregate quarterly data on non-durable real
consumption per capita and real disposable income per capita. The results (see attached
table) suggest that indeed lagged income is not helpful in predicting future consumption (on
top of lagged consumption).
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EQUATIONS RELATING CONSUMPTION TO LAGGED UONSUMPTION AND PAsT LEVELs OF REAL DisPosABLE INCOME

Equation No. and Equation R? s D-W F F*
3l ¢ = —16 + 1.024¢,_; — .010)y,_; .9988 14.7 1.71 .1 3.9
(11)  (.044) (.032)
3.2 6= —23+ 1.076¢,_, + .049y,_; — 051 »,_,
(1) (.047) (.043) (.052)
—.023y, 5 — .0245,_, 19989 14.4 2.02 2.0 2.4
(.051) (.037)
B3 = =25+ 1113¢, , + Y By, B = .077 9988 14.6 1.92 2.0 2.7
(11)  (.054) =1 (.040)

Figure 9: Table 3 in Hall (1978).

3.3.2 Allowing for time-variation in interest rate: the log-linearized Euler equation

The regression (8) imposes that the gross real interest is constant and equal to the inverse
of the discount factor. It also imposes that preferences are quadratic. We can relax both
assumptions yet obtain a result very similar to the CEQ, as long as we are looking at small
deviations around the equilibrium.?

To see how this is done, consider the Euler equation of the general model:

W (ct) = BERi1u/ (cern)]

Assume that RtH is known as of time . This would be the case if Rt+1 is the return on
a one-period risk free bond between ¢ and ¢ + 1. Assume further that preferences are CRRA
so that u/(c) = ¢~%, with § > 0.

The Euler equation takes the form:
¢; ! = BRi1Ey[c; )]

We can rewrite this as follows:

1 = AR By
1 = exp(—p+rir1)Erfexp(—0AInciy1)]
0 = —p+r1+InEfexp(—61In(cii1/ct)]
where we define p = —In 5 and ; = In R;;1 and where the third line takes logs. Assume

now that A In ¢;4 is conditionally normally distributed. Then, the Euler equation takes the
form:

1
0=—-p+ry1 —0EAlncy + 592%A1n Cit1

3Recall that we motivated the CEQ as a second order approximation of preferences around the equilibrium.

Instead of taking a second order approximation of preferences then solving for optimal smoothing, we can take a
first order condition of the first order condition of the general consumption-saving problem.
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where V;Aln ¢y is the conditional variance of consumption growth.* If consumption
growth is not conditionally normally distributed, this expression is a second-order approxi-
mation.

Re-arranging, we obtain:

1 1
EtA In Ct1 =~ 5(7’1;4_1 - p) + 59%A1H Ct+1 (9)

If we ignore the conditional variance term, and assume that the interest rate is equal to
the discount rate (r; = p), then we obtain an expression similar to the CEQ:

Eilncyg = Ingy.
log-consumption follows a random-walk.’

If the interest rate is not constant, but we still ignore the variance term, we recover that
expected consumption growth depends on the difference between the interest rate and the
growth rate, scaled by the IES 1/6: EAlnciy1 = 1/0(ri1 — p).

As we will see a bit later, the variance term captures the precautionary savings component
of consumption growth. It is always positive, increasing the growth rate of consumption.

For now, let’s assume that the variance term is either zero, or constant. The log-linearized
Euler equation leads to the following empirical specification:

Incip1 =a+b Inct+c ¢ +d 1441+ €1

and, if the equation is correctly specified, the point estimate d should be the Intertemporal
Elasticity of Substitution 1/6.°

Equations of that form have been estimated in literally hundred of papers. The goals of
these regressions are usually two-fold:

1. estimate 1/6 from d, the IES from the coefficient on Ti+1

2. test the orthogonality restriction that information available at time ¢ does not predict
consumption growth: ¢ = 0. For example, expected income growth F;Aln 411
should not help predict consumption growth.

The literature typically finds:

“This results from the fact that if 2 is distributed A'(, o) then Elexp(z)] = exp(u + 1/202).

5The original CEQ model states that consumption in levels follows a random walk. The log-linearized result
states that it is log-consumption that follows a random walk. The two are not very different for small deviations.
Moreover, a random walk in logs is probably a better empirical specification given that consumption (and its
innovations) grow over time. Campbell and Mankiw (1989) test the CEQ in logs.

The constant a captures the sum of the impatience terms p/6 and the —constant— precautionary term
0/2ViAln c:41 and so does not provide useful information.
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1. estimates of 1/6 between 0 and 0.2, i.e. very low estimates of the sensitivity of
consumption growth to the interest rate. Recall however, that aggregate saving can still
be quite sensitive to the interest rate because people have long lifetimes (so the effects
build up over long periods)

2. ¢ is positive and significant when using FyAln ;41 as a regressor. This means
that we reject the strict CEQ restriction. Expected income growth predicts expected
consumption growth. This is sometimes referred to as the ‘Excess Sensitivity of
Consumption’. The conclusion is we reject the joint assumptions that (1) the Euler
equation is true; (2) the utility function is CRRA; or (3) the linearization is accurate;

Remark 7 The excess sensitivity is in response to variables that consumption should not
respond too. In addition to excess sensitivity, there is an excess smoothness puzzle, whereby if
income changes are very persistent, then innovations to consumption should be more volatile
than innovations to income. One can see this is we assume the following process for income:
AGiy1 = pyyq + iy withy > 0, i.e. a MA(1) for income change. Then one can show that

ee+1 = (L +7)he

Deaton (1987) observed that despite v > 0, consumption innovations appear less volatile
than income innovations.

3.3.3 Campbell and Mankiw (1989)

This is an example of a paper estimating an equation similar to (9). They start from the
baseline CEQ model (consumption is a random walk). Rather then simply test the null that all
consumers are CEQ consumers, so that aggregate consumption also follows a random walk,
they specify an alternative where a fraction \ of consumers are ‘hand-to-mouth’ with ¢} = y/
while the remaining consumers are CEQ with Acj, ;| = €}, ;. Aggregate consumption change
is then the sum of the consumption change of the hand-to-mouth consumers and of the CEQ
consumers:
Acipr = My + (1 = Nergr

Since €41 is not observed, it is treated as the residual of the regression.

However, € is likely to be correlated with income changes, so the equation above
cannot be estimated directly. Instead, income changes need to be instrumented, using as
instruments any lagged variables (hence orthogonal to €;41) and good predictors of income
growth. Equivalently, this consists in constructing a measure of predicted income change
EyAy,1 and regressing realized consumption changes on predicted income changes.

This approach provides an alternative to the null that all consumers are CEQ. It
even allows to quantify the share of consumers that are hand-to-mouth, as measured
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by \. The estimates indicate that ) is quite high, on the order of 0.48 in the US (see Table 10).”

In addition, they run the regression including the real interest rate (see Table 11). They
use as real interest rate the 3-month T-bill rate over the quarter minus the rate of change in
the PCE deflator. They instrument the real interest rate using lagged real interest rates (since
the regression should use ex-ante real interest rates).

The specification becomes:

ACt—l—l = AAyt—l-l + (1 — /\)/97}4_1 + (1 - )\>€t+1

Notice that the coefficient on the real interest rate is not the IES, but the IES multiplied by
the share of CEQ consumers. Hence, A = 0, the coefficient is going to be biased downwards.

Table 2 EVIDENCE FROM ABROAD

Ac, = p + Ady,
C First-stage regressions .

ountry A estimate Test of

(sample period) Ac equation Ay equation (s.e.) restrictions
1 Canada 0.047 0.090 0.616 0.007
(1963-1986) (0.127) (0.030) (0.215) (0.263)
2 France 0.083 0.166 1.095 —0.055
(1970-1986) (0.091) (0.015) (0.341) (0.714)
3 Germany 0.028 0.086 0.646 —0.030
(1962-1986) (0.211) (0.031) (0.182) (0.639)
4 Italy 0.195 0.356 0.400 —0.034
(1973-1986) (0.013) (0.000) (0.094) (0.488)
5 Japan 0.087 0.205 0.553 0.018
(1959-1986) (0.020) (0.000) (0.096) (0.178)
6 United Kingdom 0.092 0.127 0.221 0.086
(1957-1986) (0.012) (0.002) (0.153) (0.010)
7 United States 0.040 0.079 0.478 0.004
(1953-1986) (0.092) (0.014) (0.158) (0.269)

Note: For all countries, the consumption data are total spending. The set of instruments is: 4y,_,, . . .
AYig .., A g ., Acy_y. ¢,_»—Y,_5. Also see note, Table 1.

Figure 10: Campbell and Mankiw (1989), Table 2.

"Note that Campbell and Mankiw in fact log consumption when they estimate their regression, so in fact they
are working with a specification close to the log-linearized CEQ.
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Table 5 UNITED STATES, 19531986
Ac, = p + Ady, + Or,

First-stage regressions

A 0 Test of
Row  Instruments Ac Ay r (s.e.) (s.e.)  restrictions
1 None (OLS) — — — 0.294 0.150 —

(0.041)  (0.070)

2 Ay, ...A4y,_, 0045 0030 0471 0438 0.080  —0.010
Trow - g (0.061) (0.125) (0.000) (0.189) (0.123)  (0.441)

3 Ac, ...,Ac, 0062 0046 0455 0.467 0.089  —0.006
Frog o fg  (0.026) (0.060) (0.000) (0.152) (0.110)  (0.391)
4 A, ...,A,, 0092 0034 0431 0657 0.016  —0.022

Teeas -« Tra  (0.005) (0.106) (0.000) (0.212) (0.146)  (0.665)

Note: See Table 1

Figure 11: Campbell and Mankiw (1989), Table 5.

3.3.4 Household level data: Shea (1995), Parker (1999), Souleles (1999) and Hsieh
(2003)

While early papers (like Hall (1978) or Campbell and Mankiw (1989)) tested the CEQ using
aggregate data, the literature quickly moved to testing the CEQ using household level data.
There are a number of reasons why this is more satisfying:

e aggregate consumption does not fluctuate much. By contrast, household level con-
sumption can fluctuate a lot more

e we can hope to identify more precisely expected future income for some categories of
workers (Shea (1995)) and so we get cross sectional variation that adds to the power of
the tests

e we can use ‘natural experiments’ where households learn about future income in
a measurable way, and then measure the response of consumption (Parker (1999),
Souleles (1999), Hsieh (2003)).

But household level data can also be problematic: accurate time series data on consumption
and income for a given household is hard to obtain. One needs to worry about sampling
weights, sample attrition...

e Shea (1995, AER): uses the PSID. PSID is a panel with reasonable income data, but
only food consumption. It also oversample poor households. Shea matches head of
households to union contracts and uses publicly available information on union wage
growth to construct a measure of expected wage growth. He assigns respondents to
unions with national or regional bargaining: trucking, postal service, railroads... or
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lumber in the Pacific Northwest, shipping on the East Coast.... He matches other
respondents to dominant employers in some areas (e.g. worker in the automobile
industry living near flint will be assigned to G.M.). Ends up with 647 observations
from 285 households. Finds that expected wage growth predicts expected consumption
growth.

e Parker (1999) uses the Consumption Expenditure Survey, used to construct the con-
sumption weights for the Consumer Price index. Not a panel, but repeated cross
sections. Each household stays in the CEX for 4 quarters, which yields 5 interviews,
with income and demographic data collected in interviews 2 and 5. The CEX has
excellent coverage of consumption, but relatively poor measures of income and also
has a very limited time dimension for each household. Parker uses the fact that different
households will hit the cap at different times during the calendar year and therefore
will see a drop in payroll taxes in different quarters. Crucially, the household knows
in advance whether he/she will hit the cap in a given quarter, so consumption should
not respond. Yet, he finds a predictable response of consumption. The elasticity of
consumption to predictable income is around 0.5.

e Souleles (1999) looks at income tax refunds, using the CEX. Since income tax refunds
are known in advance (taxpayers know their income of the previous year and calculate
the size of the refund when they file), consumption should not change when the refund
is received. The CEX survey asks the household about tax refunds in the second and
final interviews. Souleles finds that consumption responds to the tax refund. In a more
recent paper, Parker, Souleles, Johnson and McClellan (2013, AER) add a module to
the CEX questionnaire during the period of the 2008 stimulus payment (a tax cut).
Cross sectional variation arises from the random timing of receipts, based on the last
two digits of the recipient SSN. The amount of the tax cut was also well publicized
and known in advance ($300-$600 for individuals, $600-$1200 for couples....). They
find that households spent 12-30% of the tax cut.

e Hsieh (2003) instead exploits the annual payments of the Alaska Permanent fund to all
Alaskan residents. The amount disbursed is large and known in advance. Using the
CEX again, Hsieh finds that there is little evidence of a change in consumption during
the quarter of the receipt of the fund. Variation comes from changes over time in the
size of the transfers as well as cross sectional variation in family size. Importantly,
Hsieh finds that —while consumption does not respond to the payment of the Alaskan
Permanent Fund- it does respond to tax refunds, suggesting that there is an issue of
‘saliency’ of the change in income.

Why does expected income growth predict consumption growth?

e Consumption and leisure are substitutes (Aguiar and Hurst 2005 JPE). Home production
and work-related expenditures. Relevant when thinking about drop in consumption at
retirement. Food expenditures drops because home production (not recorded in food
expenditures) rises dramatically.
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TABLE 2—RESPONSE OF CONSUMPTION TO ALASKA PFD

dlog(Nondurable dlog(Durable
consumption) consumption)
(1) (2) (3) (4) (5) (6)
PFD, X Family Size,, 0.0002 —0.0167 —0.0034 —-0.1659 —0.1741 —0.1488
Family Income, (0.0324) (0.0336) (0.0328) (0.0878) (0.0916) (0.0890)
Controls for:
Family size No No Yes No No Yes
Year dummies No Yes No No Yes No
Number of observations 806 806 806 806 806 806

Notes: Dependent variable is log(C,,/C,,;,). Standard errors are in parentheses. All regres-
sions are ordinary least squares (OLS) and include a quadratic in age and changes in the
number of children and adults in the household.

Figure 12: Hsieh (2003): Table 2

Households support lots of dependent in mid-life (children, college...). Hence they
have no choice but to have high consumption when income is high

households are liquidity constrained and impatients (more on this later)

some consumers are ‘rule of thumb’ consumers (Campbell and Mankiw 1989)

welfare costs of not optimizing constantly are second order

3.3.5 A Detour: GMM Estimation

With CRRA preferences, the general equation to be estimated is
;% = BE Ry )

This is a non-linear equation with at least two parameters: 6 and 3. The general idea
of the Hansen and Singleton (1982) Generalized Method of Moments (GMM) estimation
method is to define 2,1 = SRy 1¢;, +61 — ¢; . Then, under the null that the model is correct,
FEizir1 = 0. In other words, z;41 is unpredictable based on any variable dated ¢ or earlier.
Suppose we consider such a variable w; ;. Then we must have E[z;11w; ] = 0. The sample
analog of this moment condition is: v; = ZtT:_Ol wj t2¢+1 = 0. If we have J such variables,
then we can estimate the parameters of the model by minimizing v'Quv where v ‘stacks’ all
the moment conditions: v = (v, v9,...v7)" and where ) is some weighting matrix. This
method is very general (and is one of the reasons Hansen received the Nobel prize in 2013).
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Figure 13: Aguiar & Hurst (2005), figure 1.

4 Moving beyond the CEQ

The CEQ model provides some interesting insights, mainly consumption smoothing (i.e.
the fact that consumption is going to respond to permanent changes more than to transitory
ones). Yet the model is soundly rejected.

In particular, consumption growth responds to income growth. The model also predicts
that consumption profile should be dictated by the interest rate and the rate of time preference,
not by the actual timing of income. This is also rejected: Carroll and Summers show that
consumption profiles track income profiles for different occupations or in different countries.
See figures 14 and 15.

Most households have relatively little wealth, so their consumption will mostly track their

income. Yet, the use their modest saving to ‘buffer’ income shocks. We are interested in
understanding these ‘buffer stock’ households.
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Source: Calculations by authors using CES tapes.

Figure 14: Carroll & Summers (1991), figure 10.7a
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4.1 Precautionary Saving
If we move away from linear marginal utility (i.e. quadratic utility), we open the door to
precautionary saving. In that case, the household will care about higher moments of future

consumption. Suppose that u/(.) is convex, i.e. that u”’(.) is positive. In that case, we know

from the convexity of u’ that:
Ey[u/(cr41)] = v/ (Etferta])

and the inequality is strict when there is uncertainty about future consumption. This implies

that we cannot have ¢; = E}[c;41]. If this were the case, then :

u'(cr) = u' (Eilcera]) < Eifu'(cer1)]

which would violate the Euler equation. Consumption c; has to be lower than in the CEQ

case , that is
¢t < Eilcig]

Uncertainty depresses current consumption and thus raises saving. This is known as

precautionary saving (or saving for a rainy day).

u/(cr)

Ef’(c)]

u/(E[d]) "

u/(cp)

ay

O e-----
>

Figure 16: Convex marginal utility
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For general preferences, Kimball (1990) showed that what matters for the precautionary
motive is the concavity of —u/(.) (or equivalently the convexity of /(.)). He defined a
coeflicient of relative prudence as:®

CRP = —

Remark 8 For CRRA preferences u/(c) = ¢~ and the coefficient of relative prudence is
constant and equal to:
0(1 +6)c 01

CRP = =~

— 1496

To see the role that prudence plays, consider the case where SR = 1 (so that a CEQ
household would want to keep consumption flat over time) and let’s perform a second-order
Taylor expansion of the Euler equation around c;:

El (er41)] = Bl (c) +u"(cr)(copr — &) + 1/20" (er) (cr1 — 1))
u'(er) + " (er) E[(copr — )] + 1/20" (cr) By [(cri1 — 1))

Q

Now, substitute into the Euler equation (with SR = 1) to obtain:
u'(ct) = u'(ct) +u" (o) El(cesr — )] + 1/2u” (ct) Byl (ceyr — cr)?]

Rearrange to solve for expected consumption growth:

"
Ct+1 — Ct U (Ct)Ct Ct+1 — Ct\9 Ct+1 — Ct\2
= iy B 2y
The slope of consumption growth is controlled by the coefficient of relative prudence
and something that looks like the conditional variance of consumption growth (it’s not quite
the variance since ¢; # Ei[ci11]).

Everything else equal, precautionary saving tends to increase expected consumption
growth. How does this modify the Euler equation estimation?

To answer this question, let’s consider again the log-linearized Euler equation (9) rewritten
below for convenience:®

1 1
EtA In Ct4+1 ~ 5(7}4_1 - p) + §9VtA1n Ct+1

8There is also a coefficient of absolute prudence, defined as —u"”(c) /u” (c).

Technical observation: in the log-linear Euler equation the conditional variance is scaled by # while in the
derivation above, it is scaled by the CRP 1 + 6. The reason for the difference is that in the log-linear Euler
equation there is an adjustment for the concavity of the log (Jensen’s inequality).
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This gives the following empirical specification:

1 1
Aln Ct+1 = 5(7}4,.1 — p) + 59‘/;5A In Ct+1 + Et+1

Suppose for the time being that we ignore the precautionary term in this expression,
i.e. that we lump it with the error term of the regression €, and estimate the first-order
log-linear Euler equation. This would be valid if we satisfy the orthogonality condition
that the precautionary term is orthogonal to the interest rate. Carroll (1997) [death to the
log-linearized Euler equation!] argues that this is unlikely to be the case. The reason is
that both the interest rate r;; and the conditional variance of consumption growth are
endogenous objects and are likely to interact in the general equilibrium of the economy.
This implies that the precautionary saving term is an omitted variable that is likely to be
correlated with the equilibrium interest rate.

To see how this works most simply, suppose that the economy is on a balanced growth
path where households face some level of idiosyncratic risk, but no aggregate risk.' Along
such a balanced growth path, the growth rate of aggregate consumption must equal the growth
rate of aggregate income which is certain, since there is no aggregate risk, and which we
denote g, = Alny; 1. If households are ex-ante identical, facing the same amount of risk
etc... they will all choose the same expected consumption growth, therefore also equal to g,.
It follows from the second order log-linearized Euler equation that:

1 1
Gy = E(Tt-yl —p)+ §9WAIH Ct+1

This equation tells us that in the aggregate equilibrium, the variance of idiosyncratic
consumption growth and the interest rate will be related by:
02
re41 = 0gy +p — EVtA Inciyq

A higher amount of uninsurable idiosyncratic risk (as measured by V;A ln ¢, 1) will be
associated with a lower real riskfree interest rate r4 1. Carroll concludes that estimating the
first-order log-linearized Euler equation (i.e. without controlling for precautionary saving) is
likely to be seriously misspecified. This can explain in particular why the estimated IES is
very low.

A way to address this critique would be to incorporate directly in the regression a term
that controls for the importance of precautionary saving, i.e. for the term thA Incpqq in
the regression. This is what Dynan (1993) does by adding proxies for income uncertainty.
But it is difficult to obtain such estimates in the first place, and if we try to instrument for the
precautionary saving motive, we have to be careful to find instruments that for precautionary
saving that are independent from the interest rate, not an easy task.

Implicitly this requires that some risk sharing opportunities are not exploited. Otherwise, households would
like to diversify their idiosyncratic risk away. Technically, such models are called Bewley models, after Bewley
(1977). For a seminal Bewley model, see Aiyagari (1994).
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4.2 The Buffer Stock Model

Intuitively, precautionary saving tilts-up consumption profiles and therefore leads to more
saving and wealth accumulation. Consider a household that faces income uncertainty. If that
household has a high wealth level, then heuristically income uncertainty should not matter
much and therefore consumption should not be too different from the certainty equivalent
framework (CEQ). We know that in that case, what controls the slope of the expected
consumption profile (and therefore of subsequent wealth) is whether SR is smaller of greater
than 1.

e If BR > 1, the household is patient and would like to save. In that case, the precaution-
ary and smoothing motive push in the same direction: eventually, the household will
manage to accumulate enough assets to insure against income fluctuations. In fact, if
BR > 1 an infinitely lived household would accumulate an unbounded level of assets.

e If SR = 1, the argument is a bit more subtle, but the result is the same. Here,
the household would like to smooth marginal utility. It will be able to do this by
accumulating an unbounded amount of wealth.!! The upshot is that if 3R > 1 the
model is not terribly interesting: the household would just accumulate vast amounts
of wealth, enough to be indifferent to the impact of income fluctuations on marginal
utility. This is neither interesting nor realistic!

e The last case is when SR < 1. In that case, the household is impatient. A CEQ
household would run choose to consume more today and run down assets. But by
running down assets, it increases the strength of the precautionary saving motive since
income fluctuations are more likely to impact marginal utility. So this case present
an interesting tension: on the one hand, the household would like to save to smooth
fluctuations in marginal utility. On the other hand, it wants to consume now and prefers
not to accumulate wealth. The result from this tension is that the household will aim
to achieve a certain target level of liquid wealth, but not more. Once households have
accumulated this target level of wealth, consumption will tend to track income at high
frequency (even in response to predictable income change), thus potentially explaining
the excess sensitivity puzzle. It can also explain why consumption tracks income at
low frequency (explaining the Carroll-Summers (1991) empirical patterns in figures
14 and 15). This is the buffer-stock model.

Let’s flesh the details of that model out. Consider a household with standard preferences:

o0

U=max Y Bu(c)
{ee} 120

""This result is formally established by Schechtman (1975) and Bewley (1977). See Deaton (1991) for a
discussion.
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and with a budget constraint:
ai41 = R(at + gt — Ct)

The household faces a constant interest rate R but a stochastic income stream {g;},
where we assume for simplicity that ¢, is independently identically distributed every period.
We assume that SR < 1 so that, if there was no uncertainty, the household would prefer
to consume now and would run down assets over time, and even borrow against future income.

How much would the household borrow? If y,in, > 0 is the lowest possible realization
of income every period, then it is immediate to show that the household would not be able
to run its asset levels below amin = —¥min/(R — 1).'? If the household borrowed a larger
amount at any point in time, there would be a strictly positive probability that it would not be
able to repay. In other words, aniy, is the natural borrowing limit faced by the household. It
is the present value of the lowest possible income the household would receive from now
on, and a; > anmin. Of course, it is possible that the household faces a stronger liquidity
constraint than the natural borrowing limit, if access to credit markets is limited. This is a
relevant feature of the world since many people face limited access to credit markets.

In order to fix ideas, we are going to consider an extreme case where the household
cannot borrow at all. That is, we impose the restriction that:!3

atEO

If there was no uncertainty, the solution to the household consumption-saving problem
would be quite straightforward: it would run down initial assets ag, then set consumption
equal to income. With uncertainty, this is not going to be optimal for the reasons discussed
above: it would leave the household exposed to too much fluctuations in marginal utility.

Therefore, there should be some target level of liquid wealth that the household would
like to revert to.

We can write the income fluctuations problem as (see Deaton (1991)):

U= maxz Blu(cy)

leek 15
subject to:
a+1 = Rlar+ 1y — )
a¢ Z 0
Ct 2 0

2This condition derives from the intertemporal budget constraint and the requirement that consumption
remain positive.
BThis corresponds to the natural borrowing limit if ymin = 0.
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It is useful to express the problem in terms of ‘cash on hand’ z;, defined as the amount
of liquid resources the household has access to at the beginning of the period:
Ty = ar + Y
The constraints of the problem become:

Tip1 = Rz — ) + G
0 < <z

Let’s define v(x;) the value function of this problem. We can write the associated Bellman
equation:

va) = maweuler) + BEfo(ais)]
S.t.
Ti1 = Rz —c) + i

0 < <z
The first order condition associated with this Bellman equation is:
U/(Ct) = BREt[U/(CH—l)] + )\t

where ); is the Lagrange multiplier associated with the constraint ¢; < x;.!* The comple-
mentary slackness condition is:
)\t (l’t — Ct) =0

For the usual envelope reasons, the marginal value of cash on hand satisfies:
V' (x1) = BREYV (z441)] + At = o (ct)
It follows that:

e when the credit constraint does not bind, the usual Euler equation holds:
u'(cr) = BRE[u'(ct41)]

e when the credit constraint binds, A\; > 0 and ¢; = x; and
u'(z¢) > BREu/(cts1)]

We can summarize both cases as follows:

u'(ct) = max (BRE[u (c441)], v/ (z¢)) (10)

The credit constraint ¢; < x; operates in two ways:

Technically there is another Lagrange multiplier associated with the constraint ¢; > 0, but this one will
never bind as long as the Inada conditions are satisfied, so we ignore it here.
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1. If the household is constrained at time ¢, it is forced to consume less than desired.

2. The credit constraint also matters, even in periods where it does not bind directly,
because of the likelihood that it will bind in the future. Technically, this is encoded in
Ei[u/(ci41)]. The curvature of marginal utility leads the household to save more to
reduce the likelihood of being constrained in the future.

This model cannot be solved in closed form. Instead, we have to resort to numerical
techniques to characterize optimal consumption behavior. Denote ¢; = f(z;) the optimal
consumption rule followed by the household. It is not a function of time because the problem
is recursive and stationary. We can then rewrite the Euler equation as:

W (f(zy) = max(BREu (f(z41))], ' (z0)) (11)
Ty = R(xe— f(21)) + G (12)

The problem becomes one of solving for the function f(.). The right hand side of equation
(14) defines a functional equation:

T(f)@) = w (max(BRE[ (f(z:1))]. v ()))
t41 = R(@—f(@)+in

where u/~! is the inverse of the marginal utility (assumed well defined). The optimal
consumption rule is then a fixed point of the operator T'( f):

f(x) =T(f)(x)

Not surprisingly, the regularity condition that ensures that this operator has a unique
fixed point is SR < 1, i.e. precisely the requirement that the household is impatient. '3

Moreover, this fixed point can be obtained by iteration. Suppose that we have a candidate
consumption function ¢(z) = f™(x). Then we can construct f"*1(x) as

fri(@) = T(f") (=)

i.e. as the solution of:

u(f" () = max(BRE (f"(241))], v/ (2)) (13)
41 = R(z— f"(2) +3n (14)
The sequence f™(x) converges uniformly to f(x), i.e. lim, || f"(x) — f(x)|| =0

where ||.|| is some Euclidean distance.
This is called Euler equation iteration. !
Figure 17 shows the optimal consumption rule for this problem for the case where
Ymin > 0. It has the following properties:

6

"STechnically, this condition ensures that the operator T'( f) is a contraction mapping.
'S Another approach, called value function iteration works with the value function v () that solves the Bellman
equation.
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Certainty Equivalent Buffer Stock Model

forward looking much less forward looking

retirement saving households will not save for retirement at age 20
consumption and income paths independent  Once you have your buffer, g. ~ g,

interest rate elasticity small effect of interest rate

uncertainty does not matter uncertainty matter

Table 1: Comparing CEQ and Buffer Stock Models

e consumption is a function of x, not .

e below a certain threshold level x*, the household prefers to consume all its assets:
¢ = z. This is because the current marginal utility of consumption is very high.

e above z*, the consumption rule is concave, and always below the certainty equivalent
consumption

e we can represent expected consumption growth ;A In ¢ as a function of cash on hand
x. It is a decreasing function:

— for low levels of wealth, precautionary saving dominate, cash on hand will
increase and consumption is expected to grow.

— For high levels of cash on hand, consumption grows at rate SR < 1 so cash on
hand decreases.

— The target level of cash on hand can be defined as that level that remains constant
(in expectations), i.e. the level 2** such that E[x;;|xy = **] = **. Carroll
(2012) shows that that expected consumption growth is below 1 and above SR at

the target level of cash-on-handz**.!”

e Even if cis a function of x, once x is close to its target, ¢ will move together with y: if
y is expected to decline, then consumption will decline once x declines (not before):
predictable movements in y will translate into movements in c.

Figure 18 reports the dynamics of the buffer stock model, as computed by Carroll (2012).
We can summarize the two models as in table 1:

4.3 Consumption over the Life Cycle

See Gourinchas & Parker (2002) [GP]. Revisits the question of optimal consumption behavior:
e model with both lifecycle saving motive and precautionary saving motive

e structural estimation of the consumption function, i.e. not relying on Euler equation,
or reduced form consumption functions

For more on this, see Carroll (2012), “Theoretical foundations of buffer stock saving.”
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FiGUure 1.—Consumption functions for alternative utility functions and income dispersions.
Figure 17: Deaton (1991), figure 1

e estimation based on household level data using income and consumption expenditures

The estimation procedure consists in constructing age-profiles of consumption based on
micro data and estimating the parameters of the consumption problems that best replicate
these age profiles in the model.

4.3.1 The Model

Each household lives for 1" periods, works for N periods. GP truncate the problem at
retirement by writing:

N—-1
U = EO[Z Bhu(er) + BNV (an)]
=0

subject to:
agy1 = Rlag +ye — )

The function Viy(.) summarizes preferences from retirement onwards, including any
bequest motive. GP assume that preferences are CRRA: u/(c) = ¢ 9. Further, they assume
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Figure 18: The Buffer Stock Model

that labor income y; has a transitory and a permanent component:

Yt = Pl
pr = Gipi—1my

where p, and 7, are iid. GP assume that p, = 0 with some probability p. This is meant
to capture unemployment risk. One implication is that yn,;, = 0 so the natural borrowing
limit is ai, = 0. However, with preferences that satisfy the Inada conditions, the household
will never choose to hit the borrowing limit.!® Otherwise, In p, is N'(0, Ui). Inn, is also
normally distributed A/(0, 0,27). The variance of these shocks and the unemployment risk are
calibrated to household level data.

The problem features two state variables: cash on hand x; = a; + y+ and the permanent
level of income p; (since the latter conditions how large future income will be). In general,
the complexity of numerical problems grows exponentially with the number of state variables
(curse of dimensionality). Even with modern computers and parallelization techniques, we
cannot realistically solve problems with more than 1 or 2 state variables. Fortunately, the
assumptions of the problem allow to implement a normalization that reduces the number of

'8To see this, observe that if a = 0 in one period, then there is a strictly positive probability that the agent will
have zero consumption next period if the unemployment shock is realized.
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Figure 19: Gourinchas & Parker (2002), figure 1

state variables. Define 2 as the ratio of variable z to the permanent component of income:
Z = z/p. Then, we can rewrite the problem’s Euler equation as:

u'(é(21)) = BRE; [u/(Gryany1Ga1(Z41))]
where
i1 = R(Zy — ¢) [(Gra1nppr) + Hogr

Notice that the consumption rules are indexed by age, since households of different ages
face different remaining horizons. So unlike the infinite horizon model, we don’t need to look
for a fixed point of the Euler equation, but iterate backwards, starting from the consumption
rule at retirement, assumed to be linear in cash on hand:!

CN = M1TN
For any value of the parameters, the resulting consumption functions can be evaluated
numerically (see figure 19).
4.3.2 Estimating the Structural Model

Once the optimal consumption rules ¢ (&) are evaluated, GP construct the age-consumption
profiles C; by aggregating over the distribution of possible realizations of the state variables

!9This implies that in principle we don’t need to ensure that the functional equation defines a contraction
mapping. If the horizon were infinite, the condition for buffer stock behavior would be BRE[(Gn) %] < 1
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x and p:
In¢; = Elln(é(xe/pe)pe)] = /1n(ét($t/Pt)pt)dFt($t,pt;¢)

where dFy(.,.) denotes the joint distribution, according to the model, of cash on hand
and permanent income at age ¢. In practice, this joint distribution is a complex object to
calculate. An important step is to construct the moments above by simulating a large number
of households (a Monte Carlo simulation). The simulated moment converges to the true
model moment as the size of the simulation increases.

The last step is in matching these simulated moments to the same moments constructed
on the household level data. The algorithm chooses the vector of structural parameters to
minimize the distance between these simulated moments and the data moments.

If we denote g;(v)) = 1/1; Y, Inc; s — Iné(¢) as the distance between simulated and
data consumption at age ¢, then the estimator minimizes

9(@)Wg(4))

where W is a weighting matrix and g = (g1, g2, ..., gnv—1)’-

The results of the estimation indicate the following:
e Consumption tracks income over the lifecycle

e The estimated parameters (¢ and ) are quite reasonable with 5 = 0.96 and 6 = 0.51,
with R — 1 = 3.44%. The model thus features “buffer stock” behavior in the sense that
agents want to keep a constant target level of cash on hand around 1.2 times permanent
income until around age 40.

e Around age 40, life cycle considerations kick in and saving increase markedly. At
that point, precautionary saving become less relevant since the higher liquid wealth
allows the household to smooth consumption. Hence in the latter phase of active life,
households behave like CEQ consumers with consumption growth controlled by SR.

e in the early part of their lifecycle, income is growing but households are unable to
borrow much. Hence precautionary saving dominates.

e The structural parameters are well identified precisely because the turning point at
which savings increase is determined by the relative strength of the two saving motives.

The lifecycle model with uninsurable labor income risk has become a workhorse to
evaluate quantitatively various policies. For instance, Scholz et al (2006) use it to evaluate
whether Americans are saving optimally. Their model features uncertain lifetimes, unin-
surable earnings, medical expenses, progressive taxation, government transfers and social
security benefits. They use the model to compare, household by household, wealth predictions
and find that the model accounts for more than 80% of the 1992 cross sectional variation in
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FIGURE 3.—Household consumption and income over the life cycle, by education group.

Figure 20: Gourinchas & Parker (2002), figure 2
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Figure 21: Gourinchas & Parker (2002), figure 6. Target cash on hand over age.

wealth. The paper uses data from the Health and Retirement Study (HRS) supplemented with
restricted social security data on earning realizations throughout life. The results indicate
that most households save enough for retirement, especially give the fact that they contribute
to social security and employer retirement plans.

S Asset Pricing

5.1 The Canonical Model Again with Multiple Assets

We now switch focus and use the canonical model to tell us about asset prices. Let’s consider
again the canonical model. Now assume that the household can invest in two assets:

o ariskless asset that pays a riskfree return 244
e arisky asset that pays a risky return Zt+1
The problem of the household is:
oo
U = mazy., ., Eo Z Bu(ct)
t=0

subject to: .
atr1 = (Rer1(1 — wi) + Zirrwe)(ae + G — ¢)
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TABLE 1
DESCRIPTIVE STATISTICS FOR THE HEALTH AND RETIREMENT STUDY (Dollar Amounts in
1992 Dollars)

Standard

Variable Mean Median Deviation
1991 earnings $35,958 $28,976 $39,368
Present discounted value

of lifetime earnings $1,718,932 $1,541,555 $1,207,561
Defined-benefit pension

wealth $106,041 $17,327 $191,407
Social security wealth $107,577 $97,726 $65,397
Net worth $225,928 $102,600 $464,314
Mean age (years) 55.7 4.7
Mean education (years) 12.7 3.4
Fraction male .70 46
Fraction black 11 31
Fraction Hispanic .06 .25
Fraction couple .66 .48
No high school diploma 22 41
High school diploma .55 .50
College graduate 12 .33
Postcollege education .10 .30
Fraction self-employed 15 .35
Fraction partially or fully

retired .29 .45

SOURCE.—Authors’ calculations from the 1992 HRS. The table is weighted by the 1992 HRS household analysis
weights.

Figure 22: Scholz , Sheshadri & Khitatrakun (2006), Table 1

400,000

350,000 H

300,000 H

250,000 H

200,000 |— H

Dollars

150,000 H

100,000

50,000

Lifetime Household Earnings Decile

D Pension # Social Security Wealth ONet Worth

F16. 1.—Median defined-benefit pension wealth, social security wealth, and net worth (excluding defined-benefit pensions) by lifetime earnings decile
(1992 dollars).

Figure 23: Scholz , Sheshadri & Khitatrakun (2006), Figure 1
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TABLE 2
OpTiMAL NET WORTH (Excluding Social Security and Defined-Benefit Pensions) AND THE PERCENTAGE OF POPULATION FAILING TO MEET
OpPTIMAL TARGETS (Dollar Amounts in 1992 Dollars)

Median Mean Percentage Median Median
Optimal Optimal below Median Median Social Defined-Benefit
Wealth Wealth Optimal Deficit Net Security Pension
Target Target Target (Conditional) Worth Wealth Wealth
Group il £l ® @ ®) ®) X
All households $63,116 $157,246 15.6% $5,260 $102,600 $97,726 $17,327
No high school diploma 20,578 70,711 18.6 2,632 36,800 72,561 0
High school diploma 63,426 139,732 15.6 5,702 102,885 97,972 21,290
College degree 128,887 243,706 12.7 14,092 209,616 127,704 60,752
Postcollege education 158,926 333,713 13.2 23,234 253,000 129,320 152,781
Earnings decile:
Lowest 2,050 48,445 30.4 2,481 5,000 26,202 0
2nd 13,781 55,898 28.7 3,328 25,500 42,159 0
3rd 26,698 84,582 21.8 5,948 43,485 57,844 0
4th 43,566 123,441 19.4 4,730 75,000 77,452 14,830
Middle 53,709 128,285 16.9 6,979 90,000 94,929 29,497
6th 76,462 131,565 10.8 10,000 124,348 119,011 45,613
7th 80,402 154,891 9.9 11,379 128,580 133,451 56,033
8th 101,034 180,643 5.5 21,036 167,000 151,397 71,373
9th 136,075 238,186 4.4 5,206 226,000 163,639 104,657
Highest 238,073 463,807 5.4 25,855 393,000 202,659 126,998
Sourck.—Authors’ calculations as described in the text.
Figure 24: Scholz , Sheshadri & Khitatrakun (2006), Table 2
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Figure 25: Scholz , Sheshadri & Khitatrakun (2006), Figure 2
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This problem features two control variables: how much to consume ¢;, and how much to
invest in the risky asset (w;). Following the same steps as before (Bellman equation, first
order condition, envelope theorem), one can show that the following conditions hold:

u'(c) = BE; [ul(ct+1)(Rt+1(1 —wi) + Zip1wy)
Rip1 By [W(ce1)] = Ey {u/(ct—&-l)Zt—i-l]

The first condition is simply the usual Euler equation. The second one is an asset pricing
condition. In fact, combining the two equations, for any asset Z; ;, optimal portfolio allocation

requires that
u'(c -
1=FE |:5(,t+1)Zi,t+1:|
()
How should we interpret this condition? Recall that we can write, for any two random
variables: F[XY] = E[X]E[Y] + cov(X,Y). Substituting, we obtain:

1 = FE [Mt,t+12i,t+1}

= Ei[Mi1] By [Zz',t+1] + covy <Mt,t+la Zi,t+1>
E; {Zi,tﬁ-l} = R (1 — covy (Mt,t+17 Zi,t-l—l))

where we define My ;11 = Su/(ci41)/w (), i.e. the intertemporal marginal rate of substi-
tution and the last line uses the fact that, from the Euler equation,

Ei M) Ry =1

The interpretation is now quite straightforward: an asset requires a high expected return
if it covaries negatively with the pricing kernel M, ; 1, i.e. if the return on the asset is low
when M is high. Now if we go back to the definition of the IMRS, we see that it is high
when consumption is low. In other words, an asset requires a premium if it offers a poor
return precisely at times when consumption is low.

The required excess return satisfies

E; [Zi,t—&-l} — Rip1 = —Ryyq1c0vy (Mt,t+1, Zi,t—i—l)

5.2 Stock Prices: a Present Value Formula

We can use the previous pricing equation to evaluate the value of a stock. Suppose we have
an asset with price P; at time ¢, resale value P at time ¢ 4+ 1 and a dividend d;; in period
t 4+ 1. Then the return to the asset is:*’

_ Pt di

VA
t+1 2

Here P is the price after the dividend in period ¢ has been paid, i.e. an ex-dividend price
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Substituting into the asset pricing equation, and solving forward, we obtain:

Z Mt,t+sdt+s]

s=1

P, =E

in other words, the stock price is the expected PDV of future dividends, evaluated using
the pricing kernel defined recursively as My ;s = My 1451 Mips—1.14s.

5.3 The Equity Premium

Consider the pricing equation derived earlier:
1=F Mt,t—&-lZi,t-i-l}

Now, let’s log-linearize in the case where utility is CRRA, assuming that consumption
growth and asset returns are jointly lognormally distributed:

1 = exp(—p)E: [exp(—0AInciiq) exp(ln Z; 441)]
= exp(—p)exp (—0E; [Alncip1] + By [In Z; 4q] + 1/2vary (—0AInci +InZ; 141))
0 = —p—0E [Alnce]+Er[InZ; 4 1]+ 1/2var, (—0AInc +1InZ;44q)

where the last line takes logs. Now taking the difference between a risky and the riskess asset,
we obtain:

Ey[InZ; 1] — rep1 + 1/2vary(Zi g1 — Rep1) = Ocovy (Alncypr,InZ; 01 — Riya)
Ey[InZ; 1] +1/2vary(Zg11 — Rye1) — 141 = Ocovy (Alncypr,InZ; 41 — Riya)

The last term on the left hand side in this equation is a Jensen’s inequality term. The
left hand side measures the equity premium. Mankiw and Zeldes estimate that it is about 6
percentage points. The standard deviation of consumption growth is 3.6 percentage points
and the standard deviation of the excess return is 16.7 percentage points. The correlation of
consumption growth and the excess return is 0.40. It follows that the right hand side is equal
to 6 x 0.40 x 3.6 x 16.7. To match the equity premium, the CRRA coeflicient needs to be
about 25.
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