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I study a model of verifiable information disclosure in which the Sender’s type is
multidimensional. I propose a new explanation for why complete unraveling does
not occur in practice, in situations such as firms disclosing financial information,
politicians revealing conflicts of interest, and participants in two-sided matching
markets choosing which attributes to show. When the Sender’s preferences over
market beliefs are sufficiently convex, equilibria feature partial disclosure. Types
that are low along any dimension pool together and reveal nothing. Thus, unlike
traditional one-dimensional models, complete unraveling does not occur. Convex
preferences arise when the Sender is uncertain over which dimensions matter, or is
disclosing to a committee or jury with heterogenous preferences.

1 Introduction

Voluntary disclosure arises in many economic contexts: a CEO disclosing information on
firm performance to shareholders; a job applicant composing their resume; a prosecutor
selectively presenting evidence to a jury; a politician disclosing potential conflicts of inter-
est and tax returns. In many such contexts, the Sender’s information is multidimensional.
For a CEO, information on revenue and profitability can be disaggregated by geography,
division, or product-line; similarly, there is substantial discretion in how to break down
balance-sheet information. Job applicants choose whether to reveal grades, and choose
which experiences, certifications, and references to include in their resume.

My model explores verifiable disclosure in environments where information is mul-
tidimensional. I show that the standard unraveling prediction from the vertical, one-
dimensional model – that all information will be voluntarily revealed, because the
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inference from not disclosing would be too negative – breaks down when information
is multidimensional. Instead, “good news” (types that are high along all dimensions) is
fully revealed, whereas all other types pool together (“vague news”) and reveal nothing.
Unraveling stops midway.

The core prediction of less-than-full unraveling relies on the Sender’s preferences over
Receiver’s beliefs being sufficiently convex. I show that this assumption is satisfied in
several natural environments. First, the Sender may be uncertain about which dimensions
the Receiver cares about, and is either ambiguity-averse or risk-averse. A second, inde-
pendent foundation arises when the Sender is disclosing to multiple and heterogenous
stakeholders, who care about a different mix of dimensions.

A leading application of my model is to financial disclosure. The full unraveling
prediction is seen as counterfactual in this environment: leaving aside mandatory disclo-
sure, there is great heterogeneity among firms in voluntary disclosure policies and large
levels of apparent non-disclosure. The accounting literature has identified two disclosure
frictions that break the paradoxical unraveling prediction: costly disclosure costs and lack
of common knowledge that the Sender is informed. However, these frictions need to be
large to meaningfully alter the equilibrium prediction. To give a recent example, Apple
has announced that starting from Q1 2019 it will no longer break apart its hardware
revenue by product line.1 It is certainly common knowledge among investors that Apple
possesses such a breakdown, and direct disclosure costs are negligible.2 My model
suggests an additional force that stops unraveling when information is multidimensional.

1.1 Literature review

The literature on voluntary disclosure was initiated by Grossman and Hart (1980), Gross-
man (1981), and Milgrom (1981), who established the seminal unraveling result. Two
strands of the accounting literature then showed that the unraveling result breaks down
under disclosure frictions: in Dye (1985) and Jung and Kwon (1988), because the market
is uncertain whether the Sender is informed; in Jovanovic (1982) and Verrecchia (1983),
because disclosure is costly.

1For recent news coverage, see e.g. https://www.cnbc.com/2018/11/02/heres-what-every-major-
analyst-had-to-say-about-apples-earnings.html and https://www.forbes.com/sites/petercohan/2018/11/17/what-
are-apple-ge-and-google-trying-to-cover-up/.

2However, there may be indirect disclosure costs by revealing which products are more profitable. For
example, Amazon’s decision to not disaggregate AWS revenue may have been driven by a desire to hide
from (potential) competitors how valuable cloud computing was becoming. I thank Michael Ostrovsky for
making this point.
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The disclosure literature is still very active: more general models of verifiable dis-
closure are studied by Bertomeu and Cianciaruso (2018) and Rappoport (2017), among
many others. These models consider complex evidence structures, and show that full
unraveling does not in general obtain; in my model, the evidence structure is simple and
unraveling stops because of the geometry of the problem.

There are other papers that study voluntary disclosure with multidimensional in-
formation. In Fishman and Hagerty (1990) the Sender can only disclose one of many
dimensions. In Shin (2003), Pae (2005), and Dziuda (2011), the Sender observes multiple
dimensions and chooses which to disclose, but the Receiver is uncertain over the Sender’s
information endowment as in Dye (1985). Acharya, DeMarzo, and Kremer (2011) and
Guttman, Kremer, and Skrzypacz (2014) add dynamics and show that the timing of
disclosure plays a crucial role.

To the best of my knowledge, my paper is the first to show that multidimensionality
alone – without additional disclosure frictions, and without a complex evidence structure
– is enough to stop unraveling.

2 Leading example

To highlight the main features of my model and give intuition for its mechanics, I first
present a special case. The model is described formally and in greater generality in
Section 4.

Let Sender’s private information θ = (θ1, θ2) be two-dimensional, distributed accord-
ing to the bivariate uniform distribution on the unit square [0, 1]× [0, 1].3 Sender decides
whether to reveal θ (full disclosure), reveal nothing (no disclosure) or possibly reveal
only one or the other component (selective disclosure). Disclosure is verifiable (only true
information can be revealed) and costless, and it is common knowledge that the Sender
is informed.

Along each of the two dimensions, the Receiver (or market) forms rational expectations
given the Sender’s disclosure strategy. The market belief is denoted by x = (x1, x2). When
the Sender discloses a component i, market beliefs are correct: xi = θi. When the Sender
does not disclose θi, the market belief xi is the expected value of θi given non-disclosure
(whenever this is well-defined). Sender’s payoff is u(x1, x2) = min{x1, x2}.

An equilibrium is a disclosure strategy and market belief such that the Sender’s choice

3In particular, the two components of the private information are symmetric and independent. Neither
of these assumptions are required for my results; in the full model, arbitrary distributions are allowed.
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of disclosure is optimal given the market beliefs, and market beliefs are correct given the
Sender’s disclosure strategy.

To build intuition, suppose that the Sender never discloses their type: all (θ1, θ2) pool
together. (Since Sender’s utility is concave, this disclosure strategy would indeed be
optimal if it could be sustained, as can be shown formally using the results of Chapter 2.)
After observing no disclosure, market beliefs are set by taking conditional expectations:
xi = E[θi| no disclosure ] = 1/2, for i = 1, 2. Therefore, types with θ1 > 1/2 and θ2 > 1/2
— that is, the upper right quadrant of the unit square — have a strict incentive to deviate
to full disclosure: market beliefs would then be set to x1 = θ1 and x2 = θ2 (despite being
off-path, disclosure is always interpreted correctly since it must be truthful), and those
Sender types are better off.

We can continue this logic one step further. Suppose that Senders with (θ1, θ2) �
(1/2, 1/2) disclose their type, and all other types pool together and disclose nothing.
Then market beliefs after non-disclosure can be verified to be (x1, x2) = (5/12, 5/12).
Again, there is a set of types — the L-shaped region with 5/12 < θi ≤ 1/2, for i = 1, 2 —
where deviating to full disclosure is strictly profitable.

This logic is, of course, the same as that of the classic unraveling results of Grossman
(1981) and Milgrom (1981): for every disclosure strategy where types at the bottom pool
(any other disclosure strategy clearly can not be sustained in equilibrium), there are
above-average types that benefit from deviating to disclosure. In the one-dimensional
case, the logic inexorably leads to full unraveling: all types (except possibly the lowest
type) disclose their private information, and after non-disclosure the market believes that
the Sender is the worst type possible.

However, this logic does not lead to full unraveling in two or more dimensions.
Suppose the unraveling logic had brought us to consider the disclosure strategy where
almost all types disclose; only those with θ1 < ε or θ2 < ε, for some small ε, do not
disclose their type. What are market beliefs after observing non-disclosure? Clearly, at
least one of the two dimensions is below ε, by construction. Market beliefs, however, are
determined dimension-by-dimension, and the adverse inference along any one dimension
is not as extreme. Take belief x1. With probability ∼ 1/2, non-disclosure was caused by a
low θ1, in which case the inference is extremely low: ε/2 ' 0. However, with probability
∼ 1/2, non-disclosure was caused by a low θ2; this is uninformative about θ1, which
on average is 1/2. Putting things together, x1 ' 1

2 · 0 + 1
2 ·

1
2 = 1/4. (All quantities are

approximate because this calculation double-counts the second-order event in which both
θ1 and θ2 are below the threshold ε.) But 1/4 > ε: thus, there is a region of types that has
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a profitable deviation to non-disclosure.
To summarize, there are two contrasting phenomena. When non-disclosure is too

common, the marginal non-disclosing types strictly prefer to distinguish themselves from
the (average of the) pooling types, and deviate to disclosure. When non-disclosure is
too rare, the marginal disclosing types benefit by deviating to non-disclosure, where
they enjoy the benefit of “cross-subsidization” across the two dimensions. There is an
intermediate level of non-disclosure where these two forces cancel out, which constitutes
an equilibrium of this example.

Figure 1: Partially-unraveled equilibrium

Figure 1 shows an equilibrium of the model. All types in the shaded L-shaped
region – where either θ1 or θ2 or both are below a critical threshold – disclose neither
dimension. Types in the upper-right square disclose both dimensions. Unraveling stops
here because, conditional on no disclosure, market beliefs (represented by the blue dot)
lie on the threshold of the non-disclosure region. Since market beliefs are not interior to
the non-disclosure region – as they always would be in a one-dimensional model – there
are no types that want to deviate to disclosing. This equilibrium is prototypical, and the
main focus on the paper is on equilibria of the same form:

Definition 1. An equilibrium is a partially-unraveled equilibrium if all on-path actions are
either full-disclosure (all dimensions are revealed) or no-disclosure, and no-disclosure
happens with positive probability.

5



2.1 Full disclosure equilibrium

The basic example features a second, less interesting, equilibrium (and it can be shown
that there are no other equilibria). Suppose that the market expects the Sender to always
disclose both dimensions, and believes that the Sender’s type is 0 along any dimension
that is not disclosed (the same skeptical beliefs that sustain the classic one-dimensional
equilibrium). Then for all Sender types the best response is to disclose both dimensions
(types that have one dimension equal to exactly 0 are indifferent). In turn, this validates
the market beliefs; in particular, since non-disclosure is off path, Bayes rule does not
restrict market beliefs.

Figure 2: Non-disclosure set with small disclosure costs

I will now show that the full-disclosure equilibrium does not survive the addition
of small disclosure costs, à la Verrecchia (1983). (Similar arguments work for a Dye
(1985)-like perturbation.) Suppose that the Sender incurs a small disclosure cost ε > 0
if they choose to disclose. Then Sender types for whom θ1 < ε or θ2 < ε will prefer not
to disclose, regardless of market beliefs: by disclosing their payoff would be negative.
Therefore the non-disclosure region includes at least the L-shaped strip depicted in
Figure 2. Now Bayes rule pins down market beliefs after non-disclosure, and those beliefs
are far from the threshold non-disclosing type, regardless of how small ε is. (In the
uniform case, they are always ≥ 0.25.) It can be shown that the only equilibrium that

6



survives this perturbation is the partially-unraveled equilibrium.
This is in contrast the one-dimensional model, where the full disclosure equilibrium is

robust to small frictions of this kind (in that the equilibrium prediction moves continuously
with the size of the friction).

2.2 Equilibria with selective disclosure

The equilibria described above feature only full disclosure and no disclosure on the
equilibrium path. A natural question is then: are there other equilibria where information
is disclosed selectively? For example, it would be reasonable to conjecture that there
are equilibria in which agents disclose their best feature only, provided it is sufficiently
high. Indeed, this is the driving force in other models of multidimensional disclosure (eg,
Fishman and Hagerty (1990)), where selective disclosure is the only possibility (because
the Sender is not allowed to disclose all information, or because the Receiver has limited
information processing capacity). In contrast, in the leading example (and more generally
when there are only two dimensions) there is no equilibrium with selective disclosure.
The conjectured equilibrium in which the Sender discloses their best attribute cannot be
sustained because their utility will then depend (also) on the other attribute, on which
the market forms rational expectations; but since now there is only one dimension of
uncertainty left, the standard unraveling argument applies. When there are three or more
dimensions, the results are not as sharp: see Section 5.

2.3 Disclosure in many dimensions

I now consider equilibrium behavior (in partially-unraveled equilibria) as the number
of dimensions k grows. I continue to restrict attention to the multivariate uniform prior
and min preferences, where the partially-unraveled equilibrium can be characterized in
closed form.

Proposition 1. In dimension k, the unique partially-unraveled equilibrium is given by the
disclosure strategy σ = 1[a,1]k(θ), where disclosure threshold a is the unique solution that satisfies
a ∈ (0, 1) to

(1− a)(k+1) + 2a− 1 = 0.

Proof. See Section 7.1.

Corollary 2. In the limit as k→ ∞, the probability of full disclosure in the partially-unraveled
equilibrium goes to 0.
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Figure 3: Disclosure threshold a (in blue) and probability of disclosure
(in black) as a function of the number of dimensions k. Also shown is the
classical unraveled equilibrium for k = 1.

Figure 3 shows the threshold a(k) and the probability of disclosure P(θ ∈ [a(k), 1]k)
for different values of k. As k grows, the probability of disclosure goes to 0. The larger k
is the likelier it is that at least one dimension is low; hence, there are less and less types
that gain from separating (which in turn makes pooling less informative about any one
dimension).

2.4 More general preferences

The examples discussed so far all used variations on the u(x, y) = min{x, y} preferences.
The driving force of the model – that non-convexities in the lower contour sets can stop
unraveling – applies much more widely. Figure 4 shows an example of another utility
function that also has a unique partially-unraveled equilibrium (in two dimensions with
uniform prior).
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Figure 4: Partially-unraveled equilibrium with u(x, y) = xy

3 Sources of convex preferences

For the model to make predictions that are different from those in the classic one-
dimensional model, the Sender’s preferences must be sufficiently convex, and the com-
ponents of θ not too correlated. The one-dimensional model can be seen as a special
case of my model when either preferences are linear (so that the components of θ can be
summarized by their weighted average) or when the prior belief is concentrated along a
ray. In either case, full unraveling would be the unique equilibrium prediction.

A non-example of a model that satisfies my assumptions is complementarity among
dimensions in the market’s evaluation of the Sender’s type. For example, suppose that
Sender is CEO of a firm whose true market value depends on the weakest of two crucial
features, à la O-ring model. The CEO observes the two features and makes a disclosure
decision to maximize expected market value. After no disclosure, the Sender’s payoff is

u(no disclosure) = E[min{θ1, θ2} | region of no disclosure]. (1)

Note how the minimum function is inside the expectation. Suppose the no-disclosure
region were L-shaped like in Section 2. Then, after observing no disclosure, the market
cannot infer which dimension was low – but they can infer that the minimum of the
two is low, and hence so is the firm’s value. As a result, full unraveling is the unique
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equilibrium.
For my model to have bite, convexity must arise from the Sender’s preferences only.

In contrast to (1), the Sender’s preferences must be of the form

u(no disclosure) = min{E[θ1| no disclosure], E[θ2| no disclosure]}, (2)

where the minimum (or more generally any sufficiently convex function) is taken outside
the expectations. Below I present three applications where this required structure arises
naturally.

3.1 Risk aversion

Suppose that the Sender is uncertain about which dimensions of θ are considered impor-
tant by the Receiver. For example, a CEO may be uncertain about which of two features
(say, performance of two different divisions) will matter more in determining the share
price. Furthermore, the CEO is risk-averse: a non-trivial fraction of the CEO’s wealth is
tied to the share price.

For concreteness, let k = 2 and suppose that there are two states of the world (equally
likely and independent of θ): θ1 1 matters (and the share price is proportional to market
belief x1), or θ2 matters. Sender’s utility is a concave function of share price, say the
logarithm. The Sender maximizes expected utility. Then, the Sender’s utility function is

u(x1, x2) =
1
2

log(x1) +
1
2

log(x2)

which can be monotonically transformed into u(x1, x2) = x1x2. As shown in Figure 4,
under such preferences there is a unique partially-unraveled equilibrium.

3.2 Knightian uncertainty

Convexity of the Sender’s preferences can also arise when the Sender is uncertain over
which dimension matters, and faces Knightian uncertainty or is ambiguity averse. The
starkest example is when the Sender is extremely ambiguity averse, and believes that the
dimension that matters will always be the one on which the market has the most negative
beliefs. This gives rise to the min preferences discussed throughout Section 2.

Such non-Bayesian uncertainty aversion can arise for behavioral reasons (for example,
a job applicant that fears they will always be judged on their worst characteristic) or out
of a desire for robustness (for example, a marketer deciding not to release a mixed set of
signals out of fear that it may backfire).
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3.3 Multiple stakeholders

A third setting where convexity may arise is when the Sender is disclosing to multiple
stakeholders simultaneously. Examples include: a prosecutor choosing what to disclose
to a jury, who will then vote to convict or acquit; a job applicant choosing what to
include on their resume, which will be examined by multiple interviewers; finally, a
politician disclosing information to different segments of the electorate. The key features
for my purposes are that stakeholders put different weights on different dimensions of
the Sender’s information, and that the Sender’s preferred decision requires unanimity. In
the job applicant example, one interviewer may put more value on the signal given by a
detailed GPA breakdown, whereas another interviewer may value precise descriptions (job
title, responsibilities) of previous roles instead; and both have to approve the candidate
for hiring to take place.

For concreteness, suppose that there are two stakeholders i = 1, 2, and that stakeholder
i only cares about dimension i. If the Sender’s payoff is determined by the stakeholder
with the more negative belief (because both stakeholders have veto power, for example),
then we are in the world of Section 2. If stakeholders take a binary decision (hire/no-hire,
convict/acquit), unanimity is required, and θi determines the probability (all else held
constant) that stakeholder i takes the preferred action, then the example in Section 2.4
applies.

4 General model

I now generalize the example of Section 2 to an arbitrary number of dimensions and
possibly asymmetric utility function and prior belief. To make the analysis more stark, the
Sender’s decision is now restricted: they either reveal all information (truthfully) or reveal
none. In some situations, this is indeed the Sender’s decision problem. For example,
a job candidate may have discretion over submitting a detailed transcript or not; but a
partially-redacted transcript cannot be produced. In Section 5 I discuss how the analysis
changes when selective disclosure is allowed: the all-or-nothing equilibrium discussed
here survives, but generally (when there are 3 or more dimensions) other equilibria arise
as well.

The state of the world is a random vector θ ∈ Θ distributed according to some
distribution F on a convex and compact set Θ ⊆ Rk, with k ≥ 2. There is a single player,
Sender, who privately observes the realization of θ. After observing θ, Sender chooses
whether to disclose the entire vector θ or to disclose nothing. Disclosure is verifiable: only
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the true value can be disclosed. Disclosure is costless and the Sender is always informed.
Let σ : Θ → {0, 1} represent the Sender’s (pure) disclosure strategy, where 0 repre-

sents non-disclosure. Along each dimension i, the Receiver (or market) forms rational
expectations xi given the Sender’s disclosure strategy. When the Sender discloses com-
ponent i, market beliefs are correct: xi = θi. When the Sender does not disclose θi, the
market belief xi is the expected value of θi given non-disclosure when such expectation is
well-defined, and arbitrary otherwise. Let xND be the vector of market beliefs following
non-disclosure.

Sender’s payoff u is type-independent and only depends on the vector of market
beliefs x. We assume throughout that u is continuous, weakly increasing (u(x) ≥ u(x′)
if xi ≥ x′i for all dimensions i), and strictly increasing for strict increases (u(x) > u(x′)
if xi > x′i for all i). Normalize minθ∈Θ u(x) = 0 and maxxθ∈Θ u(x) = 1 (well-defined by
compactness of Θ and continuity).

Definition 2. A (Perfect Bayesian) equilibrium is a pair of disclosure strategy σ and market
beliefs after non-disclosure xND such that

1. σ is optimal given xND: σ(θ) = 1 if and only if u(θ) ≥ u(xND);

2. If P(θ|σ(θ) = 1) < 1, then xND is correct given σ: xND = E[θ|σ(θ) = 0].

An equilibrium is partially-unraveled if P(θ|σ(θ) = 1) < 1. For all utility levels v ∈ (0, 1],
let c(v) be the center of mass of the lower contour set L(v) := {θ ∈ Θ : u(θ) ≤ v} (which
is non-empty by construction):

c(v) :=

∫
L(v) θdF(θ)∫
L(v) dF(θ)

Since Θ is convex, c(v) ∈ Θ for all v. Thus, u(c(v)) is well-defined. Consider the
[0, 1]→ R function

d(v) := u(c(v))− v.

Proposition 3. A disclosure strategy σ is sustained in a partially-unraveled equilibrium if and
only if it is of the form σ = 1{θ∈Θ : u(θ)≥v}(θ) for a utility threshold v that satisfies d(v) = 0.

Proof. For any disclosure strategy, all types that do not disclose receive the same utility
(because utility is only a function of market beliefs, i.e., type-independent). Thus,
only disclosure strategies that disclose on some upper contour set can be sustained
in equilibrium. Next, if v is such that d(v) > 0, then threshold types (that is, θ such
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that u(θ) = v) would be better off by deviating to non-disclosure. Similarly, if d(v) < 0,
then types immediately below the threshold indifference curve would be better off by
deviating to full disclosure. Thus, σ is part of a partially-unraveled equilibrium if and
only if d(v) = 0.

By Proposition 3, to find equilibria of the model it is enough to find zeros of the
function d(v). The following lemma gives sufficient conditions under which d(v) is
continuous.

Lemma 1. If u is continuous, monotone, and strictly increasing in strict increases, and F admits
a bounded density f , then d is continuous.

Continuity of d allows us to use the Intermediate Value Theorem to prove that there
exists a partially-unraveled equilibrium, when further conditions can be verified. When u
is sufficiently concave, for low values of v the set L(v) is highly non-convex. Thus, as long
as the components of θ are not too correlated, the center of mass of L(v) falls outside the
set. That is, there exists a v such that d(v) > 0. Conversely, when L(v) = Θ, by convexity
the center of mass falls in the interior of the set, hence d(v) < 0 is always satisfied for
large enough v. When such v and v can be found, then a partially-unraveled equilibrium
is guaranteed to exist.

It is tempting to guess that the function d(v) must be monotone: when the disclosure
threshold v increases – so that increasingly “better” types are pooling with the low-types
– market beliefs after non-disclosure should increase. While this is typically the case, there
are pathological examples where higher disclosure thresholds change the distribution
of pooling types is such a way that c(v) is not increasing. This can occur when the
mass below u(θ) = v′ is concentrated in the “corners” of Θ, and the mass in the region
v′ < u(θ) ≤ v is both greater and concentrated along the diagonal. Monotonicity of d(v),
when it can be verified, is sufficient to prove that there is a unique partially-unraveled
equilibrium.

5 Selective disclosure

In the general model of Section 4 the Sender is restricted to either disclosing the entire
vector θ or to disclosing none of it. In many applications, this is the only type of
disclosure that is feasible. For example, it is typically impossible for a graduate to
produce a transcript that only shows grades for a favorably chosen subset of classes. In
other applications, however, selective disclosure — only revealing private information
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along certain dimensions — is technologically feasible. For example, a CEO may disclose
information about the performance of certain company divisions, products, or geographic
areas, while simultaneously not disclosing any information on the rest. In this section, I
ask whether such selective disclosure can be sustained in equilibrium.

Consider then an extension to the main model in which the Sender, after observing
θ, chooses a subset M ⊂ 2K = 2{1,...,k} of dimensions to disclose. (In the main model,
the Sender is restricted to choosing M ∈ {∅, K}.) The Sender’s disclosure strategy
is now a function σ : Θ → 2K that indicates which dimensions are disclosed. Upon
observing selective disclosure, the market forms rational expectations along all un-
disclosed dimensions (and when the specific subset of dimensions revealed is off-path,
or when the “wrong” type chooses a certain subset of dimensions to reveal, then beliefs
are unrestricted). Note that the inference for one dimension will in general depend on
the disclosure (or lack thereof) along other dimensions, even when the dimensions are
independent.

First, note that all equilibria discussed in the main model – that feature only full or no
disclosure – can be sustained as equilibria in the richer model. To do so, it is enough to
specify that the Receiver holds skeptical beliefs after all (off-path) selective disclosures:
when dimension i is not disclosed (but at least one other dimension is disclosed), then
xi = inf Θi. This makes such a deviation unprofitable: no or full disclosure (or both)
give a higher payoff. Unlike the one-dimensional model, such extreme beliefs are not
necessary to sustain the equilibrium: as long as xi is low enough to always place the
Sender on an indifference curve lower than that attained by no disclosure, no type will
deviate to selective disclosure.

Next, we look at equilibria that feature selective disclosure. I first prove a negative
result: there is no equilibrium in which all but one dimension are ever revealed on-path.
Then I show that there exist equilibria that are unraveled along a subset of dimensions
(meaning those dimensions are always revealed).

Proposition 4. There is no equilibrium in which the Sender discloses exactly k− 1 dimensions
with positive probability.

Proof. When, in addition to the maintained assumptions, we also have that u is strictly
increasing (u(θ) > u(θ′) if θi ≥ θ′i for all i and θj > θ′j for at least one j), the logic familiar
from unraveling in the one-dimensional model applies. Suppose without loss of generality
that with positive probability dimensions 1 through k− 1 are disclosed, and dimension
k is not disclosed. After such selective disclosure, market belief xk is pinned down by
Bayes rule. Since the event has positive probability, it includes types with θk > xk. By
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strict monotonicity of u, these types can profitably deviate to full disclosure. I omit the
(more complex) argument needed when u is not strictly monotone, but only monotone
and strictly monotone for strict increases.

In particular, when k = 2, all equilibria feature only full and no disclosure.
When k ≥ 3, there exist many asymmetric equilibria in which arbitrary subset of

dimensions (of size less than or equal to k− 2) must be disclosed. These equilibria are
sustained by assigning skeptical beliefs after all disclosure choices that don’t disclose the
“mandated” dimensions. When the number of always-disclosed dimensions is 2 or higher,
I conjecture that such skeptical beliefs do not survive the cost-based perturbation of
Section 2.1. When the number of dimensions is high, the spirit of the partially-unraveled
equilibria should be preserved – the only adjustment is that there exist equilibria in which
one dimension and only one is fully unraveled.

6 Concluding remarks

My model studies a novel force that stops unraveling: multidimensional information cou-
pled with convex preferences over market beliefs. This is independent of the well-known
forces that come from costly disclosure and uncertainty over the Sender’s information
endowment. We share the same basic policy implication: since full unraveling will
not occur under voluntary disclosure, making disclosure mandatory can be effective at
increasing information revelation.

Because information is multidimensional, however, more nuanced implications can
be drawn. Suppose that the designer only has the authority to make disclosure of one
dimension mandatory. In the leading example with k dimensions (Section 2.3), making
disclosure along any dimension mandatory decreases the disclosure threshold for the
remaining k− 1 dimensions. Thus, in equilibrium, disclosure across different dimensions
act as complements, unlike the standard intuition (and prediction of other models of
multidimensional disclosure) that more disclosure along one dimension means less along
others. A similar effect arises when the designer can forbid a certain dimension from being
disclosed, effectively eliminating it from the game. This causes no information disclosure
along the blocked dimension, but it increases equilibrium disclosure along remaining
dimensions. In both cases, by making “vague news” less vague, there is less room for
low-type Senders to pool together.
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7 Omitted proofs

7.1 Proof of Proposition 1

Let c(S) denote the center of mass of subset S ⊆ [0, 1]k. Consider the accounting identity

c([0, 1]k) = P(θ ∈ [a, 1]k)c([a, 1]k) + P(θ 6∈ [a, 1]k)c([0, 1]k r [a, 1]k)

We have P(θ ∈ [ak, 1]k) = (1− ak)
k. Thus, rearranging,

c([0, 1]k r [a, 1]k) =
1

1− (1− a)k

((
1
2

, . . . ,
1
2

)
− (1− a)k

(
1 + a

2
, . . . ,

1 + a
2

))
The equilibrium condition is c([0, 1]k r [a, 1]k) = (a, . . . , a). By symmetry, we can focus
on any one component of the k-dimensional vectors:

a =
1

1− (1− a)k

(
1
2
− (1− a)k 1 + a

2

)
=

1− (1− a)k(1 + a)
2− 2(1− a)k

which can be rearranged as

(1− a)(k+1) + 2a− 1 = 0.

7.2 Proof of Lemma 1

Since u is continuous, it is enough to show that c(v) is continuous. I first prove that the
numerator

∫
L(v) θdF(θ) =

∫
L(v) θ f (θ)dθ is continuous, using continuity along sequences.

Let vn → v. The sequence of indicator functions 1L(vn) converges pointwise to 1L(v)

almost everywhere (with respect to the Lebesgue measure on Θ), because the indifference
curve {θ : u(θ) = v} (the only place where convergence may fail) has measure zero, by
the assumptions on u. Next, note that θ f (θ)dθ is bounded above by the constant vector
with all components equal to maxθ∈Θ f (θ), which is finite by assumption. Thus, by the
dominated convergence theorem,∫

L(vn)
θdF(θ) =

∫
Θ

θ1L(vn)dF(θ)→
∫

Θ
θ1L(v)dF(θ) =

∫
L(v)

θdF(θ)

which proves continuity. An identical argument applies to the denominator. Thus, c(v)
is continuous as long as the denominator does not go to 0; this can only happen for
v = infθ∈Θ u(θ), and thus c can be extended by continuity there.
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