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Abstract

This paper explores the validity of the two-stage estimation procedures for triangular simul-

taneous linear equations models when the number(s) of the �rst and/or second-stage regressors

grow with and exceed the sample size n. In particular, the number of endogenous regressors in

the main equation can also grow with and exceed n. The analysis concerns the sparsity case,

i.e., k1(= k1n), the maximum number of non-zero components in the vectors of parameters in

the �rst-stage equations, and k2(= k2n), the number of non-zero components in the vector of

parameters in the second-stage equation, are allowed to grow with n but small compared to

n. I consider the high-dimensional version of the two-stage least square estimator where one

obtains the �tted regressors from the �rst-stage regression by a least square estimator with

l1- regularization (Lasso or Dantzig selector) when the �rst-stage regression concerns a large

number of regressors relative to n, and then apply a Lasso technique with these �tted regres-

sors in the second-stage regression. I establish su�cient conditions for estimation consistency

in l2−norm and variable-selection consistency (i.e., the two-stage high-dimensional estimators

correctly select the non-zero coe�cients in the main equation with high probability). Depending

on the underlying su�cient conditions that are imposed, the rates of convergence in terms of

the l2−error and the smallest sample size required to obtain these consistency results di�er by

factors involving k1 and/or k2. Simulations are conducted to gain insight on the �nite sample

performance of the two-stage high-dimensional estimator.
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1 Introduction

Endogeneity is a very important issue in empirical economic research. Consider the linear model

yi = xTi β
∗ + εi, i = 1, ..., n (1)

where εi is a zero-mean random error possibly correlated with xi. A component in the regressors

xi is called endogenous if it is correlated with εi (i.e., E(xiεi) 6= 0) and is called exogenous (i.e.,

E(xiεi) = 0) otherwise. Without loss of generality, I will assume all regressors are endogenous

throughout the rest of this paper for notational convenience. The modi�cation to allow mix of

endogenous and exogenous regressors is trivial. When endogenous regressors present, the classical

least squares estimator will be inconsistent for β∗ (i.e., β̂OLS
p9 β∗). The classical solution to this

problem of endogenous regressors supposes that there is some L-dimensional vector of instrumental

variables, denoted zi, which is observable and satis�es E(ziεi) = 0 for all i. Among the instrumental

variable estimation literature in econometrics, there is a popular class of models called triangular

simultaneous equation models that play an important role in accounting for endogeneity that comes

from individual choice or market equilibrium. Based on this class of models, the two-step estimation

procedures including the two-stage least square (2SLS) estimation and the control function approach

deserve the most attention. Consider the following model

yi = xTi β
∗ + εi, i = 1, ..., n, (2)

xij = zTijπ
∗
j + ηij , i = 1, ...., n, j = 1, ..., p.

xi are explanatory variables of dimension p × 1 and xij denotes the j
th component of xi. εi is a

zero-mean random error correlated with xij for j = 1, ..., p. β∗ is an unknown vector of parameters

of our main interests. Denote the components of β∗ by β∗j . For each j = 1, ..., p, zij is a dj×1 vector

of instrumental variables, and ηij a zero-mean random error which is uncorrelated with zij , and π
∗
j

is an unknown vector of nuisance parameters. I will refer to the �rst equation in (2) as the main

equation (or second-stage equation) and the second equations in (2) as the �rst-stage equations.

Throughout the rest of this paper, I will impose the following assumption.

Assumption 1.1: The data {yi, xi, zi}ni=1 are i.i.d.; E(zijεi) = E(zijηij) = 0 for all j = 1, ..., p

and E(zijηij′ ) = 0 for all j 6= j
′
.

If both equations in (2) are in the low-dimensional settings (i.e., p � n and dj � n for all

j = 1, ..., p), the 2SLS estimation and control function approach are algebraically equivalent but

have di�erent interpretations. The 2SLS can be motivated by the generalized instrumental variable

estimator de�ned as

β̂GIV = β̂(Π̂) = (Π̂TZTX)−1(Π̂TZTY ),
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where Π̂ is some L × p random matrix that can, in general, be estimated. With the choice of Π̂

being (ZTZ)−1(ZTX), the generalized instrumental variable estimator yields the 2SLS estimator,

which takes on the following algebraic form

β̂2SLS = (X̂T X̂)−1(X̂TY ).

Notice in this procedure, one �rst regresses xi on zi in the �rst stage (i.e., xi = ΠT zi + ηi) to

obtain the �tted values x̂i = ziΠ̂ and then regresses yi on the �tted values x̂i in the second-stage

regression. Another way to interpret the 2SLS estimator is through the control function approach.

By projecting the error term in the original regression equation, εi, onto ηi, one has εi = αηi + ξi

with E(ηiξi) = E(xiξi) = 0. Substituting the expression for εi into the original regression equation,

one has yi = xTi β + αηi + ξi. Based on the second equations in (2), we can consistently estimate η

by η̂ = (I − Z(ZTZ)−1ZT )X. It is easy to show that regressing yi on xi and η̂i leads to the 2SLS

estimator.

High dimensionality arises in the triangular simultaneous equations model (2) when either p� n

or dj � n for at least one j. In this paper, I consider the scenario where only a few coe�cients

β∗j are non-zero (i.e., β∗ is sparse). The case where dj � n for at least one j but p � n is similar

to the model considered by Belloni and Chernozhukov (2011b), where they showed the instruments

selected by the Lasso technique in the �rst-stage regression can produce an e�cient estimator with

a small bias at the same time. To the best of my knowledge, the case where p � n and dj � n

for all j, or the case where p � n and dj � n for at least one j in the context of the triangular

simultaneous equation models has not been studied in the literature. In both cases, one can still use

the ideas of the 2SLS estimation or control function approach together with the Lasso techniques.

For instance, in the case where p� n and dj � n for all j, one can obtain the �tted regressors by

a standard least square estimation from the �rst-stage regression as usual and then apply a Lasso

technique with these �tted regressors in the second-stage regression. Similarly, in the case where

p� n and dj � n for at least one j, one can obtain the �tted regressors by a Lasso estimator from

the �rst-stage regression and then apply another Lasso estimator with these �tted regressors in the

second-stage regression.

Compared to the existing two-stage techniques which limit the number of regressors entering the

�rst-stage equations or the second-stage equation or both, the two-stage estimation procedures with

regularization in both stages are more �exible and particularly powerful for applications in which

the researchers lack of information about the relevant explanatory variables and instruments. In

terms of practical implementations, these above-mentioned high-dimensional two-stage estimation

procedures enjoy similar computational complexity as the standard Lasso technique for linear models

without endogeneity. In analyzing the statistical properties of these estimators, the extension from

models with a few endogenous regressors to models with many endogenous regressors (p� n) in the

triangular simultaneous equation models is not obvious. This paper aims to explore the validity of
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these two-step estimation procedures for the triangular simultaneous linear equation models in the

high-dimensional setting under the sparsity scenario.

Statistical estimation when the dimension is larger than the sample size is now an active and

challenging �eld. The Lasso and the Dantzig selector are the most studied techniques (see, e.g.,

Tibshirani, 1996; Candès and Tao, 2007; Bickel, Ritov, and Tsybakov, 2009; Negahban, Ravikumar,

Wainwright, and Yu, 2011; Belloni and Chernozhukov, 2011a; Loh and Wainwright, 2012); more

references can be found in the recent books by Bühlmann and van de Geer (2011), as well as the

lecture notes by Koltchinskii (2011), Belloni and Chernozhukov (2011b). In recent years, these

techniques have received popularity in several areas, such as biostatistics and imaging. Some �rst

applications are now available in economics. Rosenbaum and Tsybakov (2010) deal with the high-

dimensional errors-in-variables problem where the non-random regressors are observed with error

and discuss an application to hedge fund portfolio replication. Belloni and Chernozhukov (2011a)

study the l1-penalized quantile regression and give an application to cross-country growth analysis.

Belloni and Chernozhukov (2010) present various applications of the Lasso to economics including

wage regressions, in particular, the selection of instruments in such models. Belloni, Chernozhukov

and Hansen (2010) use the Lasso to estimate the optimal instruments with an application to the

impact of eminent domain on economic outcomes.

In the presence of endogenous regressors, the direct implementation of the Lasso or Dantzig

selector fails as the zero coe�cients in equation (1) do not correspond to the zero coe�cients in

a linear projection type of model. The linear instrumental variable model with a single or a few

endogenous regressors and many instruments has been studied among the high dimensional econo-

metrics literature. For example, Belloni, Chernozhukov, and Hansen (2011) consider the following

triangular simultaneous equation model:

yi = θ0 + θ1x1i + xT2iγ + εi

x1i = zTi β + xT2iδ + ηi,

with E(εi|x2i, zi) = E(ηi|x2i, zi) = 0. Here yi, x1i, and x2i denote wage, education (the endogenous

regressor), and a vector of other explanatory variables (the exogenous regressors) respectively, and zi

denotes a vector of instrumental variables that have direct e�ect on education but are uncorrelated

with the unobservables (i.e., εi) in the wage equation such as innate abilities.

In many applications, the number of endogenous regressors is also large relative to the sample size.

One example concerns the nonparametric regression model with endogenous explanatory variables.

Consider the model yi = f(xi) + εi where εi ∼ N (0, σ2) and f(·) is an unknown function of interest.

Assume E(Xi|εi) 6= 0 for all i. Suppose we want to approximate f(xi) by linear combinations of

some set of basis functions, i.e., f(xi) =
∑p

j=1 βjφj(xi), where {φ1, ..., φp} are some known functions.

Then, we end up with a linear regression model with many endogenous regressors.

Empirical examples of many endogenous regressors can be found in hedonic price regressions of
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consumer products (e.g., personal computers, automobiles, pharmaceutical drugs, residential hous-

ing, etc.) sold within a market (say, market i) or by a �rm (say, �rm i). Ideally, one might want to

regress the price on the production costs, which tend to be exogenous. However, since costs are usu-

ally unobserved by the researchers, a proxy of costs is needed. Intuitively, the characteristics of �rm

i 's (or, market i 's) products can be used as a proxy. There are two major issues with using the char-

acteristics of �rm i 's (or, market i 's) products as the instruments. First, the number of explanatory

variables formed by the characteristics (and the transformations of these characteristics) of products

such as personal computers, automobiles, and residential houses can be very large. For example, in

the study of hedonic price index analysis in personal computers, the data considered by Benkard

and Bajari involved 65 product characteristics, including 23 processor-type dummies and 9 operat-

ing system-type dummies (Benkard and Bajari, 2005). Together with the various transformations of

these characteristics, the number of the potential regressors can be very large. On the other hand,

it is plausible that only a few of these variables matter to the underlying prices but which variables

constitute the relevant regressors are unknown to the researchers. Housing data also tends to exhibit

a similar high-dimensional but sparse pattern in terms of the underlying explanatory variables (e.g.,

Lin and Zhang, 2006; Ravikumar, et. al, 2010). Second, �rm i 's characteristics are likely to be

endogenous because just like price, product characteristics are typically choice variables of �rms,

and it is possible that they are actually correlated with unobserved components of price (Ackerberg

and Crawford, 2009). An alternative is to use other �rms' (other markets') characteristics as the

instruments for �rm i 's (market i 's) characteristics. In demand estimation literature, this type of

instruments are sometime referred to as BLP instruments, e.g., Berry, et. al., 1995 (respectively,

Hausman instruments, e.g., Nevo, 2001).

The case of many endogenous regressors and many instrumental variables has been studied in

the Generalized Method of Moments (GMM) context by Fan and Liao (2011), and Gautier and

Tsybakov (2011). Fan and Liao show that the penalized GMM and penalized empirical likelihood

are consistent in both estimation and selection. Gautier and Tsybakov propose a new estimation

procedure called the Self Tuning Instrumental Variables (STIV) estimator based on the moment

conditions E(ziεi) = 0. They discuss without proofs the STIV procedure with estimated linear

projection type instruments, akin to the 2SLS procedure, and �nd it works successfully in simulation.

Gautier and Tsybakov also speculate the rate of convergence for this type of two-stage estimation

procedures when both stage equations are in the high-dimensional settings. As will be shown in the

subsequent section, their speculation partially agrees with the results in this paper.

In the low-dimensional setting, the properties of the 2SLS and GMM estimators are well-

understood. However, it is unclear how the regularized 2SLS procedures compare to the regularized

GMM procedures in the high-dimensional setting. Consequently, it is important to study these

regularized two-stage high-dimensional estimation procedures in depth. Moreover, the regularized

2SLS procedures are more intuitive and easier to be understood relative to the high-dimensional

GMM estimators proposed in previous literature. Furthermore, while existing studies have provided
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useful tools for analyzing the statistical properties of the GMM type of high-dimensional estima-

tors, an important contribution of this paper is introducing a set of techniques that are particularly

suitable for showing estimation consistency and selection consistency of the two-step type of high-

dimensional estimators. In summary, the aims of this paper, as mentioned earlier, are to provide a

theoretical justi�cation that has not been given in literature for these regularized 2SLS procedures

in the high-dimensional setting.

I present the basic de�nitions and notations in Section 2. Results regarding the statistical

properties (including the estimation consistency and selection consistency) of the high-dimensional

2SLS procedure under the sparsity scenario are established in Section 3. Section 4 presents simulation

results. Section 5 discusses future work. All the proofs are collected in the appendices (Section 6).

2 Notations and de�nitions

Notation. For the convenience of the reader, I summarize here notations to be used through-

out this paper. The lq norm of a vector v ∈ m × 1 is denoted by |v|q, 1 ≤ q ≤ ∞ where

|v|q := (
∑m

i=1 |vi|q)
1/q when 1 ≤ q < ∞ and |v|q := maxi=1,...,m |vi| when q = ∞. For a matrix

A ∈ Rm×m, write |A|∞ := maxi,j |aij | to be the elementwise l∞- norm of A. The l2-operator norm,

or spectral norm of the matrix A corresponds to its maximum singular value; i.e., it is de�ned

as ||A||2 := supv∈Sm−1 |Av|2, where Sm−1 = {v ∈ Rm | |v|2 = 1}. The l1−operator norm (maxi-

mum absolute column sum) of A is denoted by ||A||1 := maxi
∑

j |aij |. I make use of the bound

||A||1 ≤
√
m||A||2 for any symmetric matrix A ∈ Rm×m. For a matrix Σ, denote its minimum

eigenvalue and maximum eigenvalue by λmin(Σ) and λmax(Σ), respectively. For functions f(n) and

g(n), write f(n) % g(n) to mean that f(n) ≥ cg(n) for a universal constant c ∈ (0, ∞) and similarly,

f(n) - g(n) to mean that f(n) ≤ c
′
g(n) for a universal constant c

′ ∈ (0, ∞). f(n) � g(n) when

f(n) % g(n) and f(n) - g(n) hold simultaneously. For some integer s ∈ {1, 2, ...,m}, the l0-ball
of radius s is given by Bm0 (s) := {v ∈ Rm | |v|0 ≤ s} where |v|0 :=

∑m
i=1 1{vi 6= 0}. Similarly, the

l2-ball of radius r is given by Bm1 (r) := {v ∈ Rm | |v|2 ≤ r}. Also, write K(s, m) := Bm0 (s) ∩ Bm2 (1)

and K2(s, m) := K(s, m)×K(s, m). For a vector v ∈ Rp, let J(v) = {j ∈ {1, ..., p} | vj 6= 0} be its
support, i.e., the set of indices corresponding to its non-zero components vj . The cardinality of a

set J ⊆ {1, ..., p} is denoted by |J |.

I will begin with a brief discussion of the case where all components in X in (1) are exogenous.

Assume the number of regressors p in equation (1) grows with and exceeds the sample size n. Let

us focus on the class of models where β∗ has at most k non-zero parameters, where k is also allowed

to increase to in�nity with p and n. Consider the following Lasso program:

β̂Las ∈ arg min
β∈Rp

{
1

2n
|y −Xβ|22 + λn|β|1

}
,
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where λn > 0 is some tuning parameter.

In the high-dimensional setting, it is well-known that a su�cient condition for lq- consistency

of the Lasso estimate β̂Las is that the matrix 1
nX

TX satis�es some type of restricted eigenvalue

(RE) conditions (see, e.g., Bickel, et. al., 2009; Meinshausen and Yu, 2009; Negahban, et. al., 2010;

Raskutti et al., 2010; Bühlmann and van de Geer, 2011; Loh and Wainwright, 2012). In this paper,

I will use the following de�nitions, referred to as RE1 and RE2, respectively.

De�nition 1 (RE1): The matrixX ∈ Rn×p satis�es the RE1 condition over a subset S ⊆ {1, 2, ..., p}
with parameter (δ, γ) if

1
n |Xv|

2
2

|v|22
≥ δ > 0 for all v ∈ C(S; γ)\{0}, (3)

where

C(S; γ) := {v ∈ Rp | |vSc |1 ≤ γ|vS |1} for some constant γ ≥ 1

with vS denoting the vector in Rp that has the same coordinates as v on S and zero coordinates on

the complement Sc of S.

The intuition behind RE1 is that in the high-dimensional setting where p > n, the Hessian is a

p × p matrix with rank at most n, so it is impossible to guarantee that its eigenvalues will be

uniformly bounded away from 0. RE1 condition relaxes the stringency of the uniform eigenvalue

condition but only requires it to hold for a suitable subset C(S; γ) of vectors. When the unknown

vector β∗ ∈ Rp is sparse, a natural choice of S is the support set of β∗, i.e., J(β∗). RE1 is a much

milder condition than the pairwise incoherence condition (Donoho, 2006; Gautier and Tsybakov,

2011, Proposition 4.2) and the restricted isometry property (Candès and Tao, 2007). As shown by

Bickel et al., 2009, the restricted isometry property implies the RE1 condition but not vice versa.

Additionally, Raskutti et al., 2010 give examples of matrix families for which the RE1 condition

holds, but the restricted isometry constants tend to in�nity as (n, |S|) grow. Furthermore, they

show that even if a matrix exhibits a high amount of dependency among the covariates, it might

still satisfy RE1. To make it more precise, they show that, if X ∈ Rn×p is formed by independently

sampling each row Xi ∼ N(0, Σ), then there are strictly positive constants (κ1, κ2), depending only

on the positive de�nite matrix Σ, and universal constants c1, c2 such that

|Xv|22
n
≥ κ1|v|22 − κ2

log p

n
|v|21, for all v ∈ Rp,

with probability at least 1− c1 exp(−c2n). The bound above ensures the RE1 condition holds with

δ = κ1
2 and γ = 3 as long as n > 32κ2κ1k log p. To see this, note that for any v ∈ C(J(β∗), 3), we

have |v|21 ≤ 16|vJ(β∗)|21 ≤ 16k|vJ(β∗)|22. Given the lower bound above, for any v ∈ C(J(β∗); 3), we
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have the lower bound
|Xv|22
n
≥
(
κ1 − 16κ2

k log p

n

)
|v|22 ≥

κ1

2
|v|22,

where the �nal inequality follows as long as n > 32(κ2κ1 )2k log p. Rudelson and Zhou (2011) as well

as Loh and Wainwright (2012) extend this type of analysis from the case of Gaussian designs to the

case of sub-Gaussian designs. In this paper, I make use of the following de�nition for a sub-Gaussian

matrix.

De�nition 2: A random variable X with mean µ = E[X] is sub-Gaussian if there is a positive

number σ such that

E[exp(t(X − µ))] ≤ exp(σ2λ2/2) for all t ∈ R,

and a random matrix A ∈ Rn×p is sub-Gaussian with parameters (ΣA, σ
2
A) if (a) each row ATi ∈ Rp

is sampled independently from a zero-mean distribution with covariance ΣA, (b) for any unit vector

u ∈ Rp, the random variable uTAi is sub-Gaussian with parameter at most σ2
A.

For example, if A ∈ Rn×p is formed by independently sampling each row Ai ∼ N(0, ΣA), then

the resulting matrix A ∈ Rn×p is a sub-Gaussian matrix with parameters (ΣA, ||ΣA||2), recalling

||ΣA||2 denotes the spectral norm of ΣA.

In addition, the following de�nition from Loh and Wainwright will be useful for analyzing the

statistical properties of the two-stage estimators for the triangular simultaneous equations models

in this paper. In some sense, De�nition 3 (RE2) can be viewed as a su�cient condition for RE1.

De�nition 3 (RE2): The random matrix Γ̂ ∈ Rp×p satis�es the RE2 condition with α > 0 and

tolerance τ(n, p) > 0 if

vT Γ̂v ≥ α|v|22 − τ(n, p)|v|21, for all v ∈ Rp. (4)

3 High-dimensional 2SLS estimation

Suppose from our �rst-stage regression, we obtain estimates π̂j and let x̂j = zj π̂j for j = 1, ..., p.

Denote the �tted regressors from the �rst-stage estimation by X̂, where X̂ = (x̂1, ..., x̂p). For the

second-stage regression, consider the following Lasso program:

β̂H2SLS ∈ argminβ∈Rp :
1

2n
|y − X̂β|22 + λn|β|1. (5)

I will �rst present a general bound on the statistical error measured by the quantity |β̂H2SLS −β∗|2.
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Lemma 3.1 (General upper bound on the l2−error). Let Γ̂ = X̂T X̂ and e = (X − X̂)β∗+ ηβ∗+ ε.

Suppose the random matrix Γ̂ satis�es the RE1 condition (3) with γ = 3 and the vector β∗ is sup-

ported on a subset J(β∗) ⊆ {1, 2, ...p} with its cardinality |J(β∗)| ≤ k. If we solve the Lasso (5)

with the choice of

λn ≥ 2| 1
n
X̂T e|∞ > 0,

then for any optimal solution β̂H2SLS , there is a constant c > 0 such that

|β̂H2SLS − β∗|2 ≤
c

γ

√
kλn.

Remarks

Notice that the choice of λn in Lemma 3.1 depends on unknown quantities and therefore, Lemma

3.1 does not provide guidance to practical implementation. Rather, it should be viewed as an inter-

mediate lemma for proving consistency of the two-stage estimator later on. The idea of the choice of

the tuning parameter λn is that it should �overrule� the empirical process part 1
nX̂

T e so that we can

work with deterministic argument (this type of approach is standard in the high-dimensional statis-

tics literature). As will become clear in the subsequent sections, we can bound the term | 1nX̂
T e|∞

from above and the order of the resulting upper bound can be used to set the tuning parameter λn.

In order to apply Lemma 3.1 to prove consistency, we need to show (i) Γ̂ = X̂T X̂ satis�es the RE1

condition (3) with γ = 3 and (ii) the term | 1nX̂
T e|∞ -

√
log p
n with high probability, then we can

show

|β̂H2SLS − β∗|2 -
√
k log p

n

by choosing λn �
√

log p
n . The assumption k log p

n → 0 will therefore imply the l2-consistency of

β̂H2SLS . Applying Lemma 3.1 to the triangular simultaneous equations model (2) requires ad-

ditional work to establish conditions (i) and (ii) discussed above, which depends on the speci�c

�rst-stage estimator for X̂. It is worth mentioning that, while in many situations one can impose

the RE1 condition as an assumption on the design matrix (e.g., Belloni, et. al. 2010; Belloni and

Chernozhukov; 2011b) in analyzing the statistical properties of the Lasso, a substantial amount of

analysis is needed in this paper to verify that X̂T X̂ satis�es the RE1 condition because X̂ is ob-

tained from a �rst-stage estimation and there is no guarantee that the random matrix X̂T X̂ would

automatically satisfy the RE1 condition. To the best of my knowledge, previous literature has not

dealt with this issue directly. Consequently, the RE analysis introduced in this paper is particularly

useful for analyzing the statistical properties of the two-step type of high-dimensional estimators in

the simultaneous equations model context. As discussed previously, this paper focuses on the case

where p � n and dj � n for all j and the case where p � n and dj � n for at least one j. The
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following two subsections present results concerning estimation consistency and variable-selection

consistency for the sparsity case.

3.1 Estimation consistency for the sparsity case

Assumption 3.1: The numbers of regressors p(= pn) and dj(= djn) for every j = 1, ..., p in model

(2) can grow with and exceed the sample size n. The number of non-zero components in π∗j is

at most k1(= k1n) for all j = 1, ..., p, and the number of non-zero components in β∗ is at most

k2(= k2n). Both k1 and k2 can increase to in�nity with dj , p, and n, for j = 1, ..., p.

Assumption 3.2: ε (and ηj for j = 1, ..., p) is an i.i.d. zero-mean sub-Gaussian vector with

the parameter σ2
ε (and respectively σ2

η). The random matrix zj ∈ Rn×dj is sub-Gaussian with

parameters at most (ΣZj , σ
2
Z) for all j = 1, ..., p.

Assumption 3.3: For every j = 1, ..., p, x∗j := zjπ
∗
j . X∗ ∈ Rn×p is a sub-Gaussian matrix

with parameters at most (ΣX∗ , σ
2
X∗) where the jth column of X∗ is x∗j .

Assumption 3.4: For every j = 1, ..., p, wj := zjvj where vj ∈ K(k1, dj) := Bdj0 (k1) ∩ Bdj2 (1).

W ∈ Rn×p is a sub-Gaussian matrix with parameters at most (ΣW , σ
2
W ) where the jth column of

W is wj .

Assumption 3.5a: For every j = 1, ..., p, the �rst stage estimator π̂j satis�es the bound |π̂j−πj |1 -
cση

λmin(ΣZ)k1

√
log dj
n with probability close to 1 (e.g., Lasso, Dantzig selector), where λmin(ΣZ) =

minj=1,...,p λmin(ΣZj ).

Assumption 3.5b: For every j = 1, ..., p, the �rst stage estimator π̂j satis�es the bound |π̂j−πj |2 -
cση

λmin(ΣZ)

√
k1 log dj

n with probability close to 1 (e.g., Lasso, Dantzig selector), where λmin(ΣZ) =

minj=1,...,p λmin(ΣZj ).

Assumption 3.6: For every j = 1, ..., p, with probability close to 1, the �rst-stage estimator

π̂j achieves the selection consistency (i.e., it recovers the true support J(π∗j )) or has at most k∗j
components that are di�erent from π∗j where k

∗
j � n. For simplicity, we consider the case where the

�rst-stage estimator recovers the true support J(π∗j ) for every j = 1, ..., p.

Remarks

Assumption 3.1 is standard in the literature on sparsity in high-dimensional linear models. As-

sumption 3.2 is common in the literature (see, Rosenbaum and Tsybakov, 2010; Negahban, et.

10



al 2010; Loh and Wainwright, 2012). This type of assumptions allow us to evoke large-deviation

bounds of the Bernstein type (see, Vershynin) based on sub-exponential random variables. In par-

ticular, if U is a zero-mean sub-Gaussian random variable with parameter σ, then the random

variable Y = U2−E(U2) is sub-exponential1 with parameter at most 2σ2 (see Vershynin). Loh and

Wainwright, 2012 extends this type of analysis from the sub-Gaussian variable to the sub-Gaussian

matrix.

Based on the second part of Assumption 3.2 that zj ∈ Rn×dj is sub-Gaussian with parameters at

most (ΣZj , σ
2
Z) for all j = 1, ..., p, we have that zjπ

∗
j := x∗j and zjvj := wj (where vj ∈ K(k1, dj) :=

Bdj0 (k1) ∩ Bdj2 (1)) are sub-Gaussian vectors. Therefore, the conditions that X∗ ∈ Rn×p is a sub-

Gaussian matrix with parameters at most (ΣX∗ , σ
2
X∗) where the jth column of X∗ is x∗j (Assumption

3.3) and W ∈ Rn×p is a sub-Gaussian matrix with parameters at most (ΣW , σ
2
W ) where the jth

column of W is wj (Assumption 3.4) are mild extensions.

For Assumptions 3.5a(b), many existing high-dimensional estimation procedures such as the

Lasso or Dantzig selector (see, e.g., Candès and Tao, 2007; Bickel, et. al, 2009; Negahban, et. al.

2010), STIV estimator (Gautier and Tsybakov, 2011), etc., simultaneously satisfy the error bounds

|π̂j − πj |1 - cση
λmin(ΣZ)k1

√
log dj
n (Assumption 3.5a) and |π̂j − πj |2 - cση

λmin(ΣZ)

√
k1 log dj

n (Assump-

tion 3.5b) with high probability. The reason I introduce Assumptions 3.5a and 3.5b separately is

explained in the following paragraph.

Assumption 3.6 says that the �rst-stage estimators correctly select the non-zero coe�cients with

probability close to 1. It is known that under some stringent conditions such as the irrepresentable

condition (Bühlmann and van de Geer, 2011) and the mutual incoherence condition (Wainwright,

2009), Lasso and Dantzig types of selectors can recover the support of the true parameter vector

with high probability. The irrepresentable condition, as discussed in Bühlmann and van de Geer,

2011, is in fact a su�cient and necessary condition to achieve variable-selection consistency with

the Lasso. Furthermore, they show that the irrepresentable condition implies the RE condition.

Assumption 3.6 is the key condition that di�erentiates the upper bounds in the two theorems to be

presented immediately.

First, I present two results for the case where p � n and dj � n for at least one j under the

sparsity condition. As discussed earlier, the key di�erence between the two theorems is that the

bound in the second theorem hinges on the additional assumption that the �rst-stage estimators

correctly select the non-zero coe�cients with probability close to 1, i.e., Assumption 3.6. With this

assumption, the estimation error of the parameters of interests in the main equation can be bounded

by the �rst-stage estimation error in l2−norm. However, in the absence of the selection-consistency

in the �rst-stage estimation, the �rst-stage statistical error in l2−norm is not enough for bounding

the estimation error in the second-stage estimation. Rather, the estimation error of the parameters

of interests in the second-stage estimation needs to be bounded by the �rst-stage estimation error

1A random variable U with mean µ = E(U) is sub-exponential if there are non-negative parameters (ϕ, b) such
that E(exp(t(U − µ))] ≤ exp(ϕ2t2/2) for all |t| < 1

b
.

11



in l1−norm. As discussed in the previous remarks, for many known high-dimensional estimation

procedures such as Lasso, Dantzig selector, and STIV estimator, the upper bounds on the l1−error
usually equal the upper bounds on the l2−error multiplied by a factor of

√
k1.

Theorem 3.2 (Upper bound on the l2−error and estimation consistency): Suppose Assumptions

1.1, 3.1-3.3, and 3.5a hold. Let d = maxj=1,...,p dj . Then, under the scaling

max(k2
1k

2
2 log d, k2 log p)

n
= o(1),

and the choice of the tuning parameter

λn � k2 max

{
k1

√
log d

n
,

√
log p

n

}
,

we have, with probability at least 1− c1 exp(−c2 log max(min(p, d), n)) for some universal positive

constants c1 and c2,

|β̂H2SLS − β∗|2 - ψ1|β∗|1 max

{√
k1k2

√
k1 log d

n
,

√
k2 log p

n

}
,

where

ψ1 = max

{
ση maxj,j′ |cov(x∗

1j′
, z1j)|∞

λmin(ΣZ)λmin(ΣX∗)
,
σX∗ max(σε, ση)

λmin(ΣX∗)

}
.

If we also have k2k1

√
k2 log d
n = o(1) and k2

√
k2 log p
n = o(1), then2 the two-stage estimator β̂H2SLS

is l2−consistent for β∗.

Theorem 3.3 (An improved upper bound on the l2−error and estimation consistency): Suppose

Assumptions 1.1, 3.1-3.4, 3.5b, and 3.6 hold. Let d = maxj=1,...,p dj . Then, under the scaling

1

n
min

{
max

{
k2

1k
2
2 log d, k2 log p

}
, min
r∈[0, 1]

max
{
k3−2r

1 log d, kr1k2 log d, kr1k2 log p
}}

= o(1),

and the choice of the tuning parameter

λn � k2 max

{√
k1 log d

n
,

√
log p

n

}
,

we have, with probability at least 1− c1 exp(−c2 log max(min(p, d), n)) for some universal positive

2The extra factor of k2 in front of these scaling conditions in Theorem 3.2 (as well as in the subsequent theorems
3.2-3.6) comes from the simple inequality |β∗|1 ≤ k2 maxj β

∗
j .
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constants c1 and c2,

|β̂H2SLS − β∗|2 - ψ2|β∗|1 max

{√
k2

√
k1 log d

n
,

√
k2 log p

n

}
,

where

ψ2 = max

ση maxj′ , j supvj∈K(k1, dj)

∣∣∣cov(x∗
1j′
, z1jv

j)
∣∣∣

λmin(ΣZ)λmin(ΣX∗)
,
σX∗ max(σε, ση)

λmin(ΣX∗)

 .

If we also have k2

√
k1k2 log d

n = o(1) and k2

√
k2 log p
n = o(1), then the two-stage estimator β̂H2SLS is

l2−consistent for β∗.

Remarks

The proofs for Theorems 3.2 and 3.3 consist of two parts. The �rst part is to show X̂T X̂ satis�es

the RE1 condition (3) and the second part is to bound the term | 1nX̂
T e|∞ from above. Based on

Lemma 3.1, the upper bound on | 1nX̂
T e|∞ pins down the scaling requirement of λn, as mentioned

previously. The scaling requirement of n and λn depends on the sparsity parameters k1 and k2, which

are typically unknown. Nevertheless, I will assume that upper bounds on k1 and k2 are available,

i.e., we know that k1 ≤ k̄1 and k2 ≤ k̄2 for some integers k̄1 and k̄2 that grow with n just like k1

and k2. Meaningful values of k̄1 and k̄2 are small relative to n presuming that only a few regressors

are relevant. This type of upper bound assumption on the sparsity is called sparsity certi�cate in

the literature (see, e.g., Gautier and Tsybakov, 2011).

Under the assumption that the �rst-stage estimators correctly select the non-zero coe�cients

with high probability (Assumption 3.6), the scaling of the smallest sample size n in Theorem 3.3

is guaranteed to be no greater than that in Theorem 3.2. The optimal choice of r in the scaling

requirement depends on the combinations of d, p, k1, and k2. In practice, it is not always necessary

for the researcher to determine the optimal r to evaluate whether his/her sample size is large enough.

For instance, if k3
1 ≤ k2 is known a priori to the researcher and also p ≤ d , then by letting r = 0,

max
{
k3

1 log d, k2 log d, k2 log p
}

= k2 log d ≤ max
{
k2

1k
2
2 log d, k2 log p

}
= k2

1k
2
2 log d.

In this example, Theorem 3.2 suggests that the choice of sample size needs to satisfy
k21k

2
2 log d
n = o(1)

while Theorem 3.3 suggests that the choice of sample size only needs to satisfy k2 log d
n = o(1).

From Theorem 3.2 (respectively, Theorem 3.3), we see that the estimation error of the parameters

of interests in the main equation is of the order of the maximum of the �rst-stage estimation error in

l2−norm multiplied by a factor of
√
k1k2 (respectively,

√
k2) and the second-stage estimation error.

These results partially agree3with the speculation in Gautier and Tsybakov (2011) (Section 7.2)

3To verify whether the rate
√

log p
n

is achievable (or not) by any procedure for the triangular simultaneous linear

equations models, a minimax lower bound result needs to be established in future work.
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that the two-stage estimation procedures can reduce the estimation error from an order of
√

logL
n to√

log p
n , where in their notations, L denotes the number of instruments and L ≥ p� n. My results

show that the reduction from
√

logL
n to

√
log p
n occurs when when the second-stage estimation error

dominates the �rst-stage estimation error. On the other hand, if d = O(L) and the �rst-stage

estimation error dominates the second-stage estimation error, then the estimation error cannot be

reduced from
√

logL
n to

√
log p
n .

In the case where the second-stage estimation error dominates the �rst-stage estimation error,

the statistical error of the parameters of interests in the main equation matches (up to a factor

of |β∗|1) the order of the upper bound for the Lasso in the context of the high-dimensional linear

regression model without endogeneity, i.e.,
√

k2 log p
n . A special case occurs when the number of

regressors in the main equation is large relative to the number of regressors in each of the �rst-stage

equations and the result is formally stated in Corollary 3.4 below.

Under the condition that the �rst-stage estimators correctly select the non-zero coe�cients with

probability close to 1, we can also compare the high-dimensional two-stage estimator β̂H2SLS with

another type of multi-stage procedure. These multi-stage procedures include three steps. In the

�rst step, one carries out the same �rst-stage estimation as before such as applying the Lasso or

Dantzig selector. Under some stringent conditions that guarantee the selection-consistency of these

�rst-stage estimators (such as the irrepresentable condition and the mutual incoherence condition

described earlier), we can recover the supports of the true parameter vectors with high probability.

In the second step, we apply OLS on the estimated supports to obtain π̂OLSj for j = 1, ..., p. In the

third step, we apply a Lasso technique to the main equation with these �tted regressors based on

the second-stage OLS estimates. This type of procedure is in the similar spirit as the literature on

sparsity in high-dimensional linear models without endogeneity (see, e.g., Candès and Tao, 2007;

Belloni and Chernozhukov, 2010).

Under this three-stage procedure, Corollary 3.4 tells us that the statistical error of the parameters

of interests in the main equation is of the order O

(
|β∗|1

√
k2 log p
n

)
, which is at least as good

as β̂H2SLS . Nevertheless, this improved statistical error is at the expense of imposing stringent

conditions that ensure the �rst-stage estimators achieve the selection consistency. These assumptions

only hold in a rather narrow range of problems, excluding many cases where the design matrices

exhibit strong (empirical) correlations. If these stringent conditions in fact do not hold, then the

three-stage procedure becomes invalid. On the other hand, even in the absence of the selection-

consistency in the �rst-stage estimation, β̂H2SLS is still a valid procedure and the bound as well as

the consistency result in Theorem 3.2 still hold. Therefore, β̂H2SLS may be more appealing in the

sense that it works for a broader range of problems in which the �rst-stage design matrices (formed

by the instruments) exhibit a high amount of dependency among the covariates.

For Theorem 3.2 (respectively, Theorem 3.3), we give an explicit form of the �rst-stage estimation
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error in Assumptions 3.5a (respectively, 3.5b) and as discussed earlier, Lasso types of techniques yield

these estimation errors. However, the claim that, the estimation error of the parameters of interests

in the main equation can be bounded by the maximum of the �rst-stage estimation error in l2−norm
multiplied by a factor of

√
k1k2 (or

√
k2 if the �rst-stage estimators correctly select the non-zero

coe�cients with probability close to 1) and the second-stage estimation error, can be made for

general �rst-stage estimation errors. This claim is formally stated in Theorems 3.5 and 3.6 below.

Upon an additional condition that the �rst-stage estimators correctly select the non-zero coe�-

cients with probability close to 1, note that the statistical error of the high-dimensional two-stage

estimator β̂H2SLS in Theorem 3.3 (Theorem 3.6) is improved upon that in Theorem 3.2 (Theorem

3.5) by a factor of
√
k1 if the �rst term in the braces dominates the second one. The improvement

of the scaling of n for general �rst-stage estimation errors is also observed in Theorem 3.6 when it

is compared to Theorem 3.5.

The factor of
√
k1 improvement in the estimation error comes from the fact that, when the

�rst-stage estimators correctly select the non-zero coe�cients with high probability, the estimation

error of the parameters of interests in the main equation is bounded by the �rst-stage estimation

error in l2−norm. As discussed earlier, in the absence of the selection-consistency in the �rst-stage

estimation, the estimation error of the parameters of interests in the second-stage estimation needs

to be bounded by the �rst-stage estimation error in l1−norm.

In Theorems 3.2 and 3.3, we see that the l2−error also depends on a quantity involving ση, σε,

σX∗ , λmin(ΣZ), λmin(ΣX∗), maxj,j′ |cov(x∗
1j′
, z1j)|∞, or maxj′ , j supvj∈K(k1, dj)

∣∣∣cov(x∗
1j′
, z1jv

j)
∣∣∣. In

the simple case of η = 0 with probability 1 (i.e., high-dimensional linear regression models without

endogeneity), one has ση = 0 and therefore the multipliers ψ1 in Theorem 3.2 and ψ2 in Theorem

3.3 reduce to σX∗σε
λmin(ΣX∗ ) , a factor that has a natural interpretation of an inverse signal-to-noise ratio.

For instance, when X∗ is a zero-mean Gaussian matrix with covariance ΣX∗ = σX∗I, one has

λmin(ΣX∗) = σ2
X∗ , so

σX∗σε
λmin(ΣX∗)

=
σε
σX∗

,

which measures the signal-to-noise of the regressors in a high-dimensional linear regression model

without endogeneity.

The terms maxj,j′ |cov(x∗
1j′
, z1j)|∞ (Theorem 3.2) and maxj′ , j supvj∈K(k1, dj)

∣∣∣cov(x∗
1j′
, z1jv

j)
∣∣∣

(Theorem 3.3) are related to the degree of multi-collinearity between the columns of the design

matrices in the �rst-stage regressions. For instance, for any l = 1, ..., dj and j = 1, ..., p, notice that

cov(x∗1j , z1jl) = cov(z1jπ
∗
j , z1jl).

The greater maxl cov(x∗1j , z1jl) is, the more multi-collinearity between the columns of the design

matrix zj we would expect, and the harder the estimation problem becomes. In the special case

of maxj,j′ |cov(x∗
1j′
, z1j)|∞ = σ2

Z , λmin(ΣZ) = σ2
Z , and λmin(ΣX∗) = σ2

X∗ , the �rst term in the
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maximum expression of ψ1 in Theorem 3.2 reduces to
ση
σ2
X∗

= 1
σX∗

(
ση
σX∗

)
, which can be related to

the ratio of the signal of the true �tted regressors to the noise of the �rst-stage error terms. The

term maxj′ , j supvj∈K(k1, dj)

∣∣∣cov(x∗
1j′
, z1jv

j)
∣∣∣ can be interpreted in a similar way.

In analogy to the various sparsity assumptions on the true parameters in the high-dimensional

statistics literature (including the case of sparsity assumption meaning that the true parameter

vector has only a few non-zero components, or approximate sparsity assumption based on imposing

a certain decay rate on the ordered entries of the true parameter vector), Assumption 3.6 can be

interpreted as a sparsity constraint on the �rst-stage estimate π̂j for j = 1, ..., p, in terms of the l0-

ball, given by

Bd0(k1) :=

{
π̂j ∈ Rd |

d∑
l=1

1{π̂jl 6= 0} ≤ k1

}
for j = 1, ..., p.

As discussed earlier, the sparsity constraint (namely, the selection consistency) of these �rst-stage

estimators is guaranteed under some conditions that may be violated in many problems. It is

plausible to extend Assumption 3.6 to the following approximate sparsity constraint on the �rst-

stage estimates in terms of l1- balls, given by

Bd1(Rj) :=

{
π̂j ∈ Rd | |π̂j |1 =

d∑
l=1

|π̂jl| ≤ Rj

}
for j = 1, ..., p.

If the �rst-stage estimation employs a Lasso or Dantzig procedure, then we are guaranteed to have

π̂j ∈ Bd1(Rj) for every j = 1, ..., p. Depending on the type of sparsity assumptions imposed on

the �rst-stage estimates, the statistical error of the high-dimensional two-stage estimator β̂H2SLS

in l2−norm and the requirement of the smallest sample size di�er. An inspection of the proof for

Theorem 3.2 reveals that the error bound and requirement of the smallest sample size in Theorem

3.2 will hold regardless of the sparsity assumption on the �rst-stage estimates. However, under these

special structures that impose a certain decay rate on the ordered entries of the �rst-stage estimates,

the bound and scaling of the smallest sample size in Theorem 3.2 is likely to be suboptimal. In

order to obtain sharper results, the proof technique adopted for showing Theorem 3.3 seems more

appropriate. I provide a heuristic truncation argument to illustrate how the proof for Theorem 3.3

can be extended to allow the weaker sparsity constraint (in terms of l1−balls) on the �rst-stage Lasso
estimates. Suppose for every j = 1, ..., p, we choose the top kj coe�cients of π̂j in absolute value,

then the fast decay imposed by the l1- ball condition on π̂j arising from the Lasso procedure would

mean that the remaining dj − kj coe�cients would have relatively little impact. With this intu-

ition, the proof follows as if Assumption 3.6 were imposed with the only exception that we also need

to take into account the approximation error arising from the the remaining dj−kj coe�cients of π̂j .

Corollary 3.4 (First-stage estimation in the low-dimensional setting): Assume the number of non-

zero components in β∗ is at most k2 and let d = maxj=1,...,p |πj | � n where | · | denotes the number
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of components in πj . Assume that, for every j = 1, ..., p, the �rst-stage estimator π̂j satis�es the

bound |π̂j − πj |2 -
√

1
n with probability close to 1. Suppose Assumptions 1.1, 3.2, and 3.3 hold.

Then, under the scaling
k2 log p

n
= o(1),

and the choice of the tuning parameter

λn � k2

√
log p

n
,

we have

|β̂H2SLS − β∗|2 -
|β∗|1σX∗ max(σε, ση)

λmin(ΣX∗)

√
k2 log p

n
,

with probability at least 1− c1 exp(−c2 log max(p, n)) for some universal positive constants c1 and

c2. If we also have k2

√
k2 log p
n = o(1), then the two-stage estimator β̂H2SLS is l2−consistent for β∗.

Theorem 3.5: Suppose Assumptions 1.1 and 3.1-3.3 hold. Also, for every j = 1, ..., p, let the

�rst-stage estimator π̂j satis�es the bound |π̂j − πj |1 ≤
√
k1M(d, k1, n) with probability close to 1.

Then, under the scaling

max

{
k2

√
k1M(d, k1, n),

k2 log d

n
,
k2 log p

n

}
= o(1),

λn � k2 max

{√
k1M(d, k1, n),

√
log p

n

}
,

we have

|β̂H2SLS − β∗|2 -
|β∗|1

λmin(ΣX∗)
max

{√
k2

√
k1M(d, k1, n), σX∗ max(σε, ση)

√
k2 log p

n

}
,

with probability at least 1− c1 exp(−c2 log max(min(p, d), n)) for some universal positive constants

c1 and c2. If we also have k2 max

{√
k2

√
k1M(d, k1, n),

√
k2 log p
n

}
= o(1), then the two-stage esti-

mator β̂H2SLS is l2−consistent for β∗.

Theorem 3.6: Suppose Assumptions 1.1, 3.1-3.4, and 3.6 hold. Also, for every j = 1, ..., p, let

the �rst stage estimator π̂j satis�es the bound |π̂j − πj |2 ≤M(d, k1, n) with probability close to 1.

Then, under the scaling

max

{
min
r∈[0, 1]

max

{
k1−r

1 M(d, k1, n),
kr1k2 log d

n
,
kr1k2 log p

n

}
, max

{
k2

√
k1M(d, k1, n),

k2 log d

n
,
k2 log p

n

}}
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= o(1),

λn � k2 max

{
M(d, k1, n),

√
log p

n

}
,

we have

|β̂H2SLS − β∗|2 -
|β∗|1

λmin(ΣX∗)
max

{√
k2M(d, k1, n), σX∗ max(σε, ση)

√
k2 log p

n

}
,

with probability at least 1− c1 exp(−c2 log max(min(p, d), n)) for some universal positive constants

c1 and c2. If we also have k2 max

{√
k2M(d, k1, n),

√
k2 log p
n

}
= o(1), then the two-stage estimator

β̂H2SLS is l2−consistent for β∗.

3.2 Variable-selection consistency

In this subsection, I address the following question: given an optimal two-stage Lasso solution

β̂H2SLS , when is its support set, J(β̂H2SLS), exactly equal to the true support J(β∗)? That is,

when can we conclude β̂H2SLS correctly selects the non-zero coe�cients in the main equation with

high probability? I refer to this property as variable-selection consistency. For consistent variable

selection with the standard Lasso in the context of linear models without endogeneity, it is known

that the so-called �neighborhood stability condition� (Meinshausen and Bühlmann, 2006) for the

design matrix, re-formulated in a nicer form as the �irrepresentable condition� (Zhao and Yu, 2006),

is su�cient and necessary. A further re�ned analysis is given in Wainwright (2009), which presents

under certain incoherence conditions the smallest sample size needed to recover a sparse signal. In

this paper, I adopt the analysis by Wainwright (2009), and Ravikumar, Wainwright, and La�erty

(2009) to analyze the selection consistency of β̂H2SLS . In particular, I need the following assump-

tions.

Assumption 3.7:

∥∥∥∥E [X∗T1,J(β∗)cX
∗
1,J(β∗)

] [
E(X∗T1,J(β∗)X

∗
1,J(β∗))

]−1
∥∥∥∥

1

≤ 1− φ for some φ ∈ (0, 1].

Assumption 3.8: The smallest eigenvalue of the submatrix X∗J(β∗) satis�es the bound

λmin

(
E
[
X∗T1,J(β∗)X

∗
1,J(β∗)

])
≥ Cmin > 0.

Remarks

Assumption 3.7, the so-called mutual incoherence condition, originally formalized by Wainwright

(2009), captures the intuition that the large number of irrelevant covariates cannot exert an overly
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strong e�ect on the subset of relevant covariates. In the most desirable case, the columns indexed

by j ∈ J(β∗)c would all be orthogonal to the columns indexed by j ∈ J(β∗) and then we would have

φ = 1. In the high-dimensional setting, this perfect orthogonality is not possible, but one can still

hope for a type of �near orthogonality� to hold.

Notice that in order for Assumption 3.7 to be scale invariant so that the quantity on the left-

hand-side always falls in [0, 1), one needs to have some type of normalization on the matrix X∗j =

(X∗1j , ... , X
∗
nj)

T for all j = 1, ..., p. One possibility is to impose a column normalization as follows

max
j=1,...,p

|X∗j |2√
n
≤ κc, 0 < κc <∞.

Under Assumptions 1.1 and 3.3, we know that each column X∗j , j = 1, ..., p is consisted of i.i.d.

sub-Gaussian variables. Without loss of generality, we can assume E(X∗1j) = 0 for all j = 1, ..., p.

Consequently, the normalization above follows from a standard bound for the norms of zero-mean

sub-Gaussian vectors and a union bound

P
[

max
j=1,...,p

|X∗j |2√
n
≤ κc

]
≥ 1− 2 exp(−cn+ log p) ≥ 1− 2 exp(−c′n),

where the last inequality follows from n� log p. For example, ifX∗ has a Gaussian design (Raskutti,

et. al, 2011), then we have

max
j=1,...,p

|X∗j |2√
n
≤ max

j=1,...,p
Σjj

(
1 +

√
32 log p

n

)
,

where maxj=1,..,p Σjj corresponds to the maximal variance of any element of X∗.

Assumption 3.8 is required to ensure that the model is identi�able if the support set J(β∗) were

known a priori. Assumption 3.8 is relatively mild compared to Assumption 3.7.

Theorem 3.7 (Selection consistency): Suppose Assumptions 1.1, 3.2, 3.3, 3.5a, 3.7, and 3.8 hold.

If we solve the Lasso program (5) with the scaling of the tuning parameter

λn � |β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}
,

and k2 max

{
k1

√
log d
n ,

√
log p
n

}
= o(1), then, with probability at least 1−c1 exp(−c2 log max(min(p, d), n)),

we have: (a) The Lasso has a unique optimal solution β̂H2SLS . (b) The support J(β̂H2SLS) ⊆ J(β∗).

(c) |β̂H2SLS, J(β∗) − β∗H2SLS, J(β∗)|∞ ≤

[
b|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

Cmin
:= B1
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for some constant b. (d) If minj∈J(β∗) |β∗j | > B1, then J(β̂H2SLS) ⊇ J(β∗) and hence β̂H2SLS is

variable-selection consistent, i.e., J(β̂H2SLS) = J(β∗).

Theorem 3.8 (Selection consistency): Suppose Assumptions 1.1, 3.2-3.4, 3.5b, 3.7, and 3.8 hold. If

we solve the Lasso program (5) with the scaling of the tuning parameter

λn � |β∗|1 max

{√
k1 log d

n
,

√
log p

n

}
,

and k2 max

{√
k1 log d
n ,

√
log p
n

}
= o(1), then, with probability at least 1−c1 exp(−c2 log max(min(p, d), n)),

we have: (a) The Lasso has a unique optimal solution β̂H2SLS . (b) The support J(β̂H2SLS) ⊆ J(β∗).

(c) |β̂H2SLS, J(β∗) − β∗H2SLS, J(β∗)|∞ ≤

[
b|β∗|1 max

{√
k1 log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

Cmin
:= B2

for some constant b. (d) If minj∈J(β∗) |β∗j | > B2, then J(β̂H2SLS) ⊇ J(β∗) and hence β̂H2SLS is

variable-selection consistent, i.e., J(β̂H2SLS) = J(β∗).

Remarks

The proofs for Theorems 3.7 and 3.8 are based on a constructive procedure called Primal-Dual

Witness (PDW) method developed by Wainwright (2009). This procedure constructs a pair (β̂, µ̂).

When this procedure succeeds, the constructed pair is primal-dual optimal, and acts as a witness

for the fact that the Lasso has a unique optimal solution with the correct signed support. The

procedure is described in the following.

1. Set β̂J(β∗)c = 0.

2. Obtain (β̂J(β∗), µ̂J(β∗)) by solving the oracle subproblem

β̂J(β∗) ∈ arg min
βJ(β∗)∈Rk2

{ 1

2n
|y − X̂J(β∗)βJ(β∗)|22 + λn|βJ(β∗)|1},

and choose µ̂J(β∗) ∈ ∂|β̂J(β∗)|1, where ∂|β̂J(β∗)|1 denotes the set of subgradients at β̂J(β∗) for

the function | · |1 : Rp → R.

3. Solve for µ̂J(β∗)c via the zero-subgradient equation

1

n
X̂T (y − X̂β̂) + λnµ̂ = 0,

and check whether or not the strict dual feasibility condition |µ̂J(β∗)c |∞ < 1 holds.
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Theorems 3.7 and 3.8 include four parts. Part (a) guarantees the uniqueness of the optimal solution

of the two-stage Lasso, β̂H2SLS (in fact, from the proofs for Theorems 3.7 and 3.8, we have that

β̂H2SLS = (β̂J(β∗), 0) where β̂J(β∗) is the solution obtained in step 2 of the PDW construction

above). Based on this uniqueness claim, one can then talk unambiguously about the support of the

Lasso estimate. Part (b) guarantees that the Lasso does not falsely include elements that are not in

the support of β∗. Part (c) ensures that β̂H2SLS, J(β∗) is uniformly close to β∗J(β∗) in the l∞−norm.

Notice that the l∞−bound in Part (c) of Theorem 3.8 is improved by a factor of
√
k1 upon that in

Part (c) of Theorem 3.7 if the �rst term in the braces dominates the second one. Also, the scaling

conditions in Theorem 3.8 are improved by a factor of
√
k1 upon those in Theorem 3.7 if the �rst

term in the braces dominates the second one. Recall that similar observations were made earlier

when we compared the bound in Theorem 3.2 with the bound in Theorem 3.3 (or, the bound in

Theorem 3.5 with the bound in Theorem 3.6). Again, these observations are attributed to that

the additional assumption of the �rst-stage estimators correctly selecting the non-zero coe�cients

(Assumption 3.6) is imposed in Theorem 3.8 but not in Theorem 3.7. The last claim is a consequence

of this uniform norm bound: as long as the minimum value of |β∗j | over j ∈ J(β∗) is not too small,

then the Lasso correctly selects the non-zero coe�cients with high probability. The minimum value

requirement of |β∗j | over j ∈ J(β∗) is comparable to the so-called �beta-min� condition in Bühlmann

and van de Geer (2011).

The proof for Theorems 3.7 and 3.8 hinges on an intermediate result that shows the mutual

incoherence assumption on E[X∗TX∗] (the population version of the matrix X∗TX∗) guarantees

that, with high probability, analogous conditions hold for the estimated quantities, X̂T X̂, which is

based on the �rst-stage regression. This result is established in Lemma 6.5 in Section 6.5.

4 Simulations [Incomplete, add signal-to-noise ratio experiments]

In this section, simulations are conducted to gain insight on the �nite sample performance of the

regularized two-stage estimators. I consider the following model:

yi =

p∑
j=1

xijβ
∗
j + εi,

xij =

d∑
l=1

zijlπ
∗
jl + ηij , j = 1, ..., p,
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where (yi, x
T
i , z

T
i , εi, ηi) are i.i.d., and (εi, ηi) have the joint normal distribution

N
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ε ρσεση · · · · · · ρσεση
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... 0 σ2
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...
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. . . 0

ρσεση 0 · · · 0 σ2
η




.

zTi is a p × d matrix of independent standard normal random variables, and zTij is independent of

(εi, ηi1, ..., ηip) for all j = 1, ..., p. In particular, I choose σε = 0.15, ση = 0.3, and ρ = 0.1. With this

setup, I simulate 1000 data sets of (yi, x
T
i , z

T
i , εi, ηi)

n
i=1 where n is the sample size (i.e., the number

of data points) in each data set. I perform 18 Monte Carlo simulation experiments constructed from

various combinations of sample sizes n, model parameters (including d, k1, p, k2, and β
∗), as well as

the types of �rst-stage and second-stage estimators employed (Lasso vs. OLS). In each experiment, I

compute 1000 estimates of the main-equation parameters β∗, l2−errors of these estimates, |β̂−β∗|2,
and selection percentages of the supports of β̂ (computed by the number of the entries in β̂ sharing

the same sign as the entries in β∗, divided by the total number of entries in β∗). Table 4.1 displays

the designs of the 18 experiments.

It is easy to see from Table 4.1 that, for each experiment, only the �rst 4 parameters in each

of the �rst-stage equations are non-zero and only the �rst 5 parameters in the main equation are

non-zero. Experiments 0-0, 0-1, and 0-2 concern the classical 2SLS procedure when both stage

equations are in the low-dimensional setting and the supports of the true parameters in both stages

are known a priori. These experiments serve as a benchmark for the two-stage Lasso procedure in

Experiments 1-0, 1-1, and 1-2. Notice that there are 3 di�erent sample sizes: 47, 470, and 4700.

The smallest sample size 47 is chosen according to the scaling requirement in Theorem 3.3. Given

dj = d = 100, k1j = k1 = 4 for all j = 1, ..., p, p = 50, and k2 = 5 in experiments 1-0 and 6-0, these

experiments are in the high-dimensional setting under the sparsity scenario in terms of both the

�rst-stage equations and the main equation. Given dj = d = k1j = k1 = 4 for all j = 1, ..., p, p = 50,

and k2 = 5 in experiment 5-0, this experiment is in the high-dimensional setting under the sparsity

scenario in terms of the main equation (with the �rst-stage equations being in the low-dimensional

setting). All experiments are performed over 1000 data sets. In particular, experiments 1-0, 5-0,

and 6-0 use the same 1000 data sets with each data set consisted of 47 data points; experiments

1-1, 2-1, 3-1, 4-1, 5-1, and 6-1 use the same 1000 data sets with each data set consisted of 470 data

points; experiments 1-2, 2-2, 3-2, 4-2, 5-2, and 6-2 use the same 1000 data sets with each data set

consisted of 4700 data points.

The tuning parameters λ1n in the �rst-stage Lasso procedure (in experiments 1-0, 1-1, 1-2, 3-1,

3-2, 5-0, 5-1, 5-2, 6-0, 6-1, and 6-2) are chosen according to the standard Lasso theory of high-

dimensional estimation techniques (e.g., Bickel, 2009); in particular, λ1n = ση

√
log d
n . The tuning
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parameters λ2n in the second-stage Lasso procedure (in experiments 1-0, 1-1, 1-2, 2-1, 2-2, 6-0, 6-1,

and 6-2) are chosen according to the scaling requirement in Theorem 3.3; The tuning parameters

λ2n in the second-stage Lasso procedure (in experiments 5-0, 5-1, and 5-2) are chosen according

to the scaling requirement in Corollary 3.4. In particular, λ2n = 0.1 · k2 max

{√
k1 log d
n ,

√
log p
n

}
in experiments 1-0, 1-1, 1-2, 2-1, and 2-2; λ2n = 0.1 · k2

√
log p
n in experiments 5-0, 5-1, and 5-2;

and λ2n = 0.001 · k2 max

{√
k1 log d
n ,

√
log p
n

}
in experiments 6-0, 6-1, and 6-2. The value of λ2n in

experiments 1-0, 1-1, 1-2, 2-1, 2-2, 5-0, 5-1, and 5-2 exceeds the value of λ2n in experiments 6-0,

6-1, and 6-2 by a factor of 0.01. This adjustment re�ects the fact that the non-zero parameters

(β1, ..., β5) = (1, ... , 1) in experiments 1-0, 1-1, 1-2, 2-1, 2-2, 5-0, 5-1, and 5-2 exceed the non-zero

parameters (β1, ..., β5) = (0.01, ... , 0.01) in experiments 6-0, 6-1, and 6-2 by a factor of 0.01.
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With the 1000 estimates β̂H2SLS of the main-equation parameters from experiments 0-0, 0-1, and

0-2 (experiments 1-0, 1-1, and 1-2), Table 4.2 (respectively, Table 4.3) displays the 5th percentile,

the median, the 95th percentile, and the mean of these estimates. Table 4.4 (Table 4.5) shows the

5th percentile, the median, the 95th percentile, and the mean of the l2−errors of these estimates,

|β̂H2SLS−β∗|2 and |β̂2SLS−β∗|2 (respectively, the selection percentages of the supports of β̂H2SLS).

The selection percentages of the supports of β̂2SLS concerning the classical (low-dimensional) simul-

taneous linear equations model (experiments 0-0, 0-1, 0-2) are exactly 100%, as expected (hence,

these statistics are not tabulated). In addition, for each of the �rst-stage equations j = 1, ..., p, I

compute the 1000 estimates π̂j, Lasso = (π̂j1, Lasso, ... π̂j100, Lasso) of the corresponding nuisance pa-

rameters π∗j = (π∗j1, ... π
∗
j100) as well as the l2−errors and the selection percentages of the supports

of these estimates, for j = 1, ..., p. The 5th percentile, the median, the 95th percentile, and the mean

of the l2−errors and the selection percentages of the supports of these estimates are also computed

for every j = 1, ..., p (notice that this yields a 50 × 4 matrix where each row contains information

with respect to the l2−errors or the selection percentages of a single �rst-stage equation parameters'

estimate). To provide a sense of how good these �rst-stage estimates are, Table 4.6 averages these

quantile and mean statistics over the 50 rows, i.e., j = 1, ..., p.

Comparing Table 4.3 with Table 4.2, notice that in the high-dimensional setting (i.e., when

n = 47), the two-stage Lasso estimator performs well in estimating β∗. From Table 4.4, we see that

when n = 47, the l2−errors of the main-equation estimate β̂H2SLS are similar to those of β̂2SLS .

When n = 470 and n = 4700, the l2−errors of β̂H2SLS and β̂2SLS are very close to each other; in

addition, these errors shrink as the sample size increases. |β̂2SLS − β∗|2 being proportional to 1√
n
is

a known fact in low-dimensional settings. From Section 3.1, we also have that the upper bounds for

|β̂H2SLS − β∗|2 are proportional to 1√
n
up to some factors involving log d, log p, k1, and k2. That

|β̂2SLS−β∗|2 and |β̂H2SLS−β∗|2 decrease (as n increases) in the highly similar fashion suggests that

β̂H2SLS behaves more and more like β̂2SLS as the sample size increases. The selection percentages of

the main-equation estimateβ̂H2SLS and the �rst-stage estimate π̂Lasso are also high (Table 4.5 and

Table 4.6). As the sample size increases, notice that the estimate β̂H2SLS (the selection percentages

of β̂H2SLS and π̂Lasso) are getting closer and closer to the truth β∗(respectively, the perfect selec-

tion). Additionally, from Table 4.6, we see that the l2−errors of the �rst-stage estimateπ̂Lasso also

shrink as n increases, an outcome to be expected from the standard Lasso theory (e.g., Bickel, 2009).

25



Table 4.2: Estimates of the main-equation parameters by the two-stage OLS procedure, Experiments 0-0, 0-1, 0-2

(β∗)
Expr. 0-0, β̂2SLS , n = 47 Expr. 0-1, β̂2SLS , n = 470 Expr. 0-2, β̂2SLS , n = 4700

5th Median 95th Mean 5th Median 95th Mean 5th Median 95th Mean

β∗1 = 1 0.827 0.999 1.181 1.000 0.954 1.000 1.045 1.000 0.986 1.000 1.014 1.000

β∗2 = 1 0.825 1.004 1.166 1.002 0.955 1.000 1.047 1.000 0.985 1.000 1.014 1.000

β∗3 = 1 0.827 1.005 1.174 1.002 0.955 1.000 1.045 0.999 0.986 1.000 1.015 1.000

β∗4 = 1 0.841 0.993 1.165 0.998 0.955 1.000 1.046 1.001 0.987 1.001 1.015 1.000

β∗5 = 1 0.816 0.995 1.166 0.991 0.952 1.001 1.047 1.000 0.985 1.001 1.014 1.000

Table 4.3: Estimates of the main-equation parameters by the two-stage Lasso procedure, Experiments 1-0, 1-1, 1-2

(β∗)
Expr. 1-0, β̂H2SLS , n = 47 Expr. 1-1, β̂H2SLS , n = 470 Expr. 1-2, β̂H2SLS , n = 4700

5th Median 95th Mean 5th Median 95th Mean 5th Median 95th Mean

β∗1 = 1 0.750 0.909 1.037 0.905 0.953 0.979 1.007 0.980 0.986 0.994 1.002 0.994

β∗2 = 1 0.747 0.910 1.029 0.903 0.952 0.979 1.005 0.979 0.986 0.994 1.002 0.994

β∗3 = 1 0.749 0.909 1.040 0.904 0.954 0.980 1.005 0.980 0.985 0.994 1.002 0.994

β∗4 = 1 0.756 0.909 1.032 0.901 0.953 0.979 1.003 0.979 0.986 0.994 1.001 0.994

β∗5 = 1 0.764 0.910 1.041 0.906 0.952 0.977 1.006 0.978 0.986 0.994 1.002 0.994

β∗6 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β∗7 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β∗8 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

...
...

...
...

...
...

...
...

...
...

...
...

...

β∗48 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β∗49 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

β∗50 = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

At the 5th percentile, the median, and the 95thpercentile, the estimates of (β∗6 , ..., β
∗
50) are exactly 0.

The mean statistics of the estimates of (β∗6 , ..., β
∗
50) range from −5.066× 10−4 to 5.550× 10−4 when n = 47,

−3.833× 10−5 to 2.300× 10−5 when n = 470, and −1.328× 10−5 to 1.439× 10−5 when n = 4700.

Table 4.4: l2−errors of the estimates of the main-equation parameters by the two-stage Lasso and OLS procedures

Experiments 0-0, 1-0, 0-1, 1-1, 0-2, 1-2

l2-error
5th Median 95th Mean

β̂H2SLS β̂2SLS β̂H2SLS β̂2SLS β̂H2SLS β̂2SLS β̂H2SLS β̂2SLS

n = 47 0.123 0.093 0.251 0.205 0.493 0.391 0.270 0.217

n = 470 0.033 0.031 0.057 0.058 0.082 0.093 0.057 0.059

n = 4700 0.010 0.009 0.017 0.018 0.025 0.030 0.017 0.019

β̂H2SLS denote estimates from the two-stage Lasso procedure (Expr. 1-0, 1-1, and 1-2).

β̂2SLS denote estimates from the two-stage OLS procedure (Expr. 0-0, 0-1, and 0-2).
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Table 4.5: Selection percentages of the estimates of the main-equation parameters by the two-stage Lasso procedure

Experiments 1-0, 1-1, and 1-2

selection % (β̂H2SLS) 5th Median 95th Mean

Expr. 1-0, n = 47 96.0 100 100 98.9

Expr. 1-1, n = 470 98.0 100 100 99.8

Expr. 1-2, n = 4700 98.0 100 100 99.9

Table 4.6: l2−errors and selection percentages of the 1st-stage estimates by the Lasso procedure

Experiments 1-0, 1-1, 1-2

Average* Expr. 1-0, π̂Lasso, n = 47 Expr. 1-1, π̂Lasso, n = 470 Expr. 1-2, π̂Lasso, n = 4700

Statistics 5th Median 95th Mean 5th Median 95th Mean 5th Median 95th Mean

l2-error 0.157 0.253 0.396 0.262 0.044 0.066 0.090 0.066 0.014 0.021 0.028 0.021

selection % 95.0 98.0 100 97.7 96.0 99.0 100 98.4 96.0 99.0 100 98.5

*: Averages are taken over j = 1, ..., 50.

In the following, I compare, in the relatively large sample size settings (i.e., when n = 470 and

n = 4700) under the sparsity scenario, the performance of the two-stage Lasso estimator with the

performance of the �partially� regularized or non-regularized estimators: �rst-stage-OLS-second-

stage-Lasso (experiments 2-1 and 2-2), �rst-stage-Lasso-second-stage-OLS (experiments 3-1 and 3-

2), and �rst-stage-OLS-second-stage-OLS (experiments 4-1 and 4-2). Clearly, it makes little sense to

consider these �partially� regularized or non-regularized estimators in the high-dimensional setting

(i.e., when n = 47). The l2−errors and selection percentages of the main-equation estimates from

these �partially� regularized or non-regularized estimators are displayed in Tables 4.7 and 4.8. In a

similar fashion as Table 4.6, Table 4.9 reports the average (over the 50 �rst-stage equations') quan-

tile and mean statistics of the l2−errors and selection percentages of the �rst-stage OLS estimates

appearing in experiments 2-1, 2-2, 4-1, and 4-2.

From Table 4.7, we again see that the l2−errors of the main-equation estimates shrink as n

increases. Comparing Table 4.7 with the last two rows of Table 4.4, we see that the two-stage Lasso

estimator achieves the smallest l2−errors of the main-equation estimates among all the estimators

considered here. The fact that the l2−errors (of the main-equation estimates) of the two-stage

Lasso estimator are smaller than the l2−errors of the �rst-stage-OLS-second-stage-Lasso estimator

and the �rst-stage-OLS-second-stage-OLS estimator could be attributed to the following. First,

comparing Table 4.9 with Table 4.6, we see that π̂Lasso outperforms π̂OLS in both estimation errors

and variable selections even in the relatively large sample size settings with sparsity (an expected

outcome attributed to the so-called �oracle property� of the Lasso technique; e.g., Bühlmann and

van de Geer, 2011). Second, recall in Section 3, we have seen that, (1) the estimation error of the
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parameters of interests in the main equation can be bounded by the maximum of a term involving

the �rst-stage estimation error and a term involving the second-stage estimation error (with the

choices of p, d, k1, and k2 in experiment 1-0 through experiment 4-2, according to the theorems in

Section 3, we should expect the estimation error of the parameters of interests in the main equation

to be bounded by the term involving the �rst-stage estimation error); (2) upon the �rst-stage

estimator correctly selecting the non-zero coe�cients with high probability, the statistical error of

the two-stage estimator β̂H2SLS in Theorem 3.6 is smaller relative to that in Theorem 3.5 (where

the �rst-stage selection-consistency condition is absent) when the error arising from the �rst-stage

estimation dominates the second-stage error (which is indeed the case here). Given the choices of

p, d, k1, and k2 in experiment 1-0 through experiment 4-2, these experiments seem to agree with

the theorems in Section 3.1. The fact that the l2−errors (of the main-equation estimates) of the

two-stage Lasso estimator are smaller than the l2−errors of the �rst-stage-Lasso-second-stage-OLS
estimator and the �rst-stage-OLS-second-stage-OLS estimator can be explained via the standard

Lasso theory: the Lasso reduces the l2−error of the OLS from
√

p
n to

√
log p
n (e.g., Bickel, 2009).

Comparing Table 4.8 with the last two rows of Table 4.5, we see that the two-stage Lasso estima-

tor achieves higher selection percentages of the main-equation estimates relative to the �rst-stage-

Lasso-second-stage-OLS estimator and the �rst-stage-OLS-second-stage-OLS estimator (again, this

outcome is expected due to the so-called �oracle property� of the Lasso technique.). The selection

percentages of the two-stage Lasso estimator and the �rst-stage-OLS-second-stage-Lasso, on the

other hand, are comparable.

Table 4.7: l2−errors of the estimates of the main-equation parameters by the �partially� regularized

or non-regularized procedures, Experiments 2-1, 2-2, 3-1, 3-2, 4-1, 4-2

l2 error β̂, n = 470 l2 error β̂, n = 4700

(Expr. #) 5th Median 95th Mean (Expr. #) 5th Median 95th Mean

2-1
0.090 0.115 0.141 0.115

2-2
0.029 0.036 0.044 0.036

(175.7%) (102.7%) (71.2%) (101.1%) (177.7%) (112.8%) (77.3%) (110.7%)

3-1
0.120 0.142 0.165 0.142

3-2
0.036 0.043 0.050 0.043

(268.9%) (149.7%) (101.4%) (148.7%) (245.3%) (153.3%) (100.8%) (148.4%)

4-1
0.090 0.108 0.129 0.109

4-2
0.030 0.036 0.043 0.036

(178.3%) (91.2%) (57.1%) (90.1%) (193.4%) (114.2%) (72.5%) (111.3%)

The upper numbers are the actual quantile or mean statistics; the lower numbers in paratenses corresponding to

expr. 2-1, 3-1, and 4-1 (expr. 2-2, 3-2, and 4-2) are percent changes relative to expr. 1-1 (respectively, expr. 1-2).
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Table 4.8: Selection percentages of the estimates of the main-equation parameters by the �partially� regularized

or non-regularized procedures, Experiments 2-1, 2-2, 3-1, 3-2, 4-1, 4-2

selection % β̂, n = 470 selection % β̂, n = 4700

(Expr. #) 5th Median 95th Mean (Expr. #) 5th Median 95th Mean

2-1
100 100 100 99.9

2-2
98.0 100 100 99.9

(2.0%) (0%) (0%) (0.1%) (0%) (0%) (0%) (0%)

3-1
44.0 56.0 66.0 55.0

3-2
44.0 54.0 66.0 54.8

(-55.1%) (-44.0%) (-34.0%) (-44.8%) (-55.1%) (-46.0%) (-34.0%) (-45.1%)

4-1
44.0 54.0 64.0 54.3

4-2
44.0 54.0 66.0 54.6

(-55.1%) (-46.0%) (-36.0%) (-45.6%) (-55.1%) (-46.0%) (-34.0%) (-45.3%)

The upper numbers are the actual quantile or mean statistics; the lower numbers in paratenses corresponding to

expr. 2-1, 3-1, and 4-1 (expr. 2-2, 3-2, and 4-2) are percent changes relative to expr. 1-1 (respectively, expr. 1-2).

Table 4.9: l2−errors and selection percentages of the 1st-stage estimates by the OLS procedure

Experiments 2-1, 2-2, 4-1, 4-2

Average* π̂OLS , n = 470 π̂OLS , n = 4700

Statistics 5th Median 95th Mean 5th Median 95th Mean

l2-error
0.136 0.155 0.177 0.156 0.039 0.044 0.049 0.044

(207.2%) (134.9%) (97.3%) (134.3%) (179.5%) (113.7%) (79.0%) (113.3%)

selection %
44.0 52.0 60.0 52.0 43.9 52.0 60.1 52.0

(-54.2%) (-47.5%) (-40.0%) (-47.2%) (-54.2%) (-47.4%) (-39.9%) (-47.2%)

*: Averages are taken over j = 1, ..., 50.

The upper numbers are the actual quantile or mean statistics; the lower numbers in paratenses are percent

changes relative to the 1st-stage estimates by the Lasso in expr. 1-1 and 1-2.

In the following 3 experiments (5-0, 5-1, and 5-2) where the �rst-stage equations are in the low-

dimensional setting and the main equation is in the high-dimensional setting, I compute the l2−errors
of the main-equation estimates (see Table 4.10) following the two-stage Lasso procedure as in exper-

iments 1-0, 1-1, and 1-2. In a similar fashion as Table 4.6, Table 4.11 reports the average (over the

50 �rst-stage equations') quantile and mean statistics of the l2−errors and selection percentages of

the �rst-stage Lasso estimate appearing in experiments 5-0, 5-1, and 5-2. Given the choices of p, d,

k1, and k2 in experiments 5-0, 5-1, and 5-2, according to Corollary 3.4, I expect these experiments

to yield smaller l2−errors of the main-equation estimates relative to experiments 1-0, 1-1, and 1-2,

respectively. Comparing Table 4.4 with Table 4.10, we notice that this is indeed the case.
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Table 4.10: l2−errors of the estimates of the main-equation parameters by the two-stage Lasso procedure

(low-dimensional 1st-stage), Experiments 5-0, 5-1, 5-2

l2-error (β̂H2SLS) 5th Median 95th Mean

Expr. 5-0, n = 47
0.105 0.188 0.340 0.201

(-14.6%) (-25.0%) (-31.1%) (-25.6%)

Expr. 5-1, n = 470
0.028 0.045 0.065 0.046

(-13.1%) (-20.1%) (-21.2%) (-19.5%)

Expr. 5-2, n = 4700
0.009 0.014 0.020 0.014

(-15.6%) (-16.8%) (-17.8%) (-17.2%)

The upper numbers are the actual quantile or mean statistics; the lower

numbers in paratenses corresponding to expr. 5-0, 5-1, and 5-2 are percent changes relative to expr. 1-0,

1-1, and 1-2, respectively.

Table 4.11: l2−errors and selection percentages of the 1st-stage estimates by the Lasso procedure

(low-dimensional 1st-stage), Experiments 5-0, 5-1, 5-2

Average* Expr. 5-0, π̂Lasso, n = 47 Expr. 5-1, π̂Lasso, n = 470 Expr. 5-2, π̂Lasso, n = 4700

Statistics 5th Median 95th Mean 5th Median 95th Mean 5th Median 95th Mean

l2-error

0.071 0.140 0.229 0.144 0.021 0.041 0.063 0.041 0.007 0.013 0.020 0.013

(-54.5%) (-44.7%) (-42.2%) (-45.1%) (-52.0%) (-38.2%) (-29.9%) (-37.8%) (-51.2%) (-37.7%) (-29.1%) (-37.3%)

*: Averages are taken over j = 1, ..., 50.

The upper numbers are the actual quantile or mean statistics; the lower numbers in paratenses corresponding to

expr. 5-0, 5-1, and 5-2 are percent changes relative to the 1st-stage estimates in expr. 1-0, 1-1, and 1-2, respectively.

In the following experiments (6-0, 6-1, and 6-2) where (β∗1 , ... , β
∗
5) = (0.01, ... , 0.01) (as opposed

to (β∗1 , ... , β
∗
5) = (1, ... , 1) in the previous experiments), following the two-stage Lasso procedure

as in experiments 1-0, 1-1, and 1-2, I compute the number of occurrences that each estimate

β̂H2SLS, 1, ... , β̂H2SLS, 5 takes on the 0 value over the 1000 replications (Table 4.12), as well as the

overall selection percentages of the main-equation estimates (Table 4.13). Because the non-zero pa-

rameters are reduced by a factor of 100, I expect it more di�cult for the two-stage Lasso procedure

to distinguish the non-zero coe�cients from the zero coe�cients. From Tables 4.12 and 4.13, we

notice that this is indeed the case.
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Table 4.12: Number of occurrences that each estimate β̂H2SLS, 1, ... , β̂H2SLS, 5 takes on the 0 value over the 1000 replications

(β∗1 , .., β
∗
5 ) = (0.01, ..., 0.01), Experiments 6-0, 6-1, 6-2

β̂H2SLS

Expr. 6-0 Expr. 6-1 Expr. 6-2 Other*

n = 47 n = 470 n = 4700 expr.

β̂H2SLS, 1 285 4 0 0

β̂H2SLS, 2 265 5 0 0

β̂H2SLS, 3 251 7 0 0

β̂H2SLS, 4 246 3 0 0

β̂H2SLS, 5 266 5 0 0

*: �Other� includes all the previous experiments 0-0 to 5-2.

Table 4.13: Selection percentages of the estimates of the main-equation parameters by the two-stage Lasso procedure

(β∗1 , .., β
∗
5 ) = (0.01, ..., 0.01), Experiments 6-0, 6-1, 6-2

selection % (β̂H2SLS) 5th Median 95th Mean

Expr. 6-0 54.0 64.0 76.0 64.2

n = 47 (-43.7%) (-36.0%) (-24.0%) (-35.1%)

Expr. 6-1 50.0 60.0 70.0 60.4

n = 470 (-49.0%) (-40.0%) (-30.0%) (-39.5%)

Expr. 6-2 50.0 60.0 72.0 60.5

n = 4700 (-49.0%) (-40.0%) (-28.0%) (-39.4%)

The upper numbers are the actual quantile or mean statistics; the lower

numbers in paratenses corresponding to expr. 6-0, 6-1, and 6-2 are percent changes relative to expr. 1-0,

1-1, and 1-2, respectively.

5 Conclusion and future work

This paper explores the validity of the two-stage estimation procedures for triangular simultaneous

linear equations models when the number(s) of the �rst and/or second-stage regressors grow with

and exceed the sample size n. In particular, the number of endogenous regressors in the main equa-

tion can also grow with and exceed n. Su�cient conditions for estimation consistency in l2−norm
and variable-selection consistency of the two-stage high-dimensional estimators are established. De-

pending on the underlying su�cient conditions that are imposed, the rates of convergence in terms

of the l2−error and the smallest sample size required to obtain these consistency results di�er by

factors involving the sparsity parameters k1 and/or k2. Simulations are conducted to gain insight

on the �nite sample performance of these two-stage high-dimensional estimators as well as con�rm

the theoretical results. Several extensions are brie�y discussed in the following.

The approximate sparsity case. First, it is useful to extend the analysis for the high-dimensional
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2SLS estimator to the approximate sparsity case, i.e., most of the coe�cients in the main equation

and/or the �rst-stage equations are too small to matter. We can have the approximate sparsity

assumption in the �rst-stage equations only (and assume the main equation parameters are sparse),

the main equation only (and assume the �rst-stage equations parameters are sparse) or both-stage

equations. When the �rst-stage equations parameters are approximately sparse, the argument in

the proof for Theorem 3.2 can still be carried through while Theorem 3.3 is no longer meaningful.

Control function approach in high-dimensional settings. Also, it is interesting to explore the

validity of the high-dimensional two-stage estimators based on the control function approach in the

high-dimensional setting. When both the �rst and second-stage equations are in low-dimensional set-

tings (i.e., p� n and dj � n for all j = 1, ..., p), the 2SLS estimation and control function approach

yield algebraically equivalent estimators. Such equivalence no longer holds in high-dimensional set-

tings because the regularization employed destroys the projection algebra. The extension for the

2SLS estimator from low-dimensional settings to high-dimensional settings seems somewhat more

natural than the extension for the two-stage estimator based on the control function approach. One

question to ask is: under what conditions can we translate the sparsity or approximate sparsity

assumption on the coe�cients β∗ in the following triangular simultaneous equations model

yi = xTi β
∗ + εi, i = 1, ..., n,

xij = zTijπ
∗
j + ηij , i = 1, ...., n, j = 1, ..., p,

to the sparsity or approximate sparsity assumption on the coe�cients β∗ and α∗ in the model

yi = xTi β
∗ + ηTi α

∗ + ξi? A simple su�cient condition for such a translation is to impose the

joint normality assumption of the error terms εi and ηi = (ηi1, ..., ηip)
T . Then, by the property of

multivariate normal distributions, we have

E(εi|ηi) = ΣεηΣ
−1
ηη ηi.

If we further assume only a few of the correlation coe�cients (ρεiηi1 , ..., ρεiηip) (associated with the

covariance matrix Σεη) are non-zero or most of these correlation coe�cients are too small to matter,

the sparsity or approximate sparsity can be carried to the model yi = xTi β
∗ + ηTi α

∗ + ξi. Then,

we can obtain consistent estimates of η, η̂, from the �rst-stage regression by either a standard least

square estimator when the �rst-stage regression concerns a small number of regressors relative to n,

or a least square estimator with l1- regularization (Lasso or Dantzig selector) when the �rst-stage

regression concerns a large number of regressors relative to n, and then apply a Lasso technique in

the second stage as follows

β̂HCF ∈ argminβ,α∈Rp :
1

2n
||y −Xβ − η̂α||22 + λn (||β||1 + ||α||1) .
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The statistical properties of β̂HCF can be analyzed in the same way as those of β̂H2SLS .

Minimax lower bounds for the triangular simultaneous linear equation models. Fur-

thermore, it is worthwhile to establish the minimax lower bounds on the parameters in the main

equation for the triangular simultaneous linear equations models. In particular, my goal is to derive

lower bounds on the estimation error achievable by any estimator, regardless of its computational

complexity. Obtaining lower bounds of this type is useful because on one hand, if the lower bound

matches the upper bound up to some constant factors, then there is no need to search for estima-

tors with a lower statistical error (although it might still be useful to study estimators with lower

computational costs). On the other hand, if the lower bound does not match the best known upper

bounds, then it is worthwhile to search for new estimators that potentially achieve the lower bound.

To the best of my knowledge, in econometric literature, there has been only limited attention given

to the minimax rates of linear models with endogeneity in high-dimensional settings.
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6 Appendix: Proofs

For technical simpli�cations, in the following proofs, I assume without loss of generality that the �rst

moment of (yi, xi, zi) is zero for all i (if it is not the case, we can simply subtract their population

means). Also, as a general rule for my proofs, b constants denote constants that are independent of

n, p, d, k1 and k2 but possibly depend on the sub-Gaussian parameters; c constants denote universal

constants that are independent of both n, p, d, k1 and k2 as well as the sub-Gaussian parameters.

The speci�c values of these constants may change from place to place. In addition, for notational

simplicity, I assume the regime of interest is p ≥ n or p� n, as in most high-dimensional statistics

literature. The modi�cation to allow p < n is trivial.

6.1 Lemma 3.1

Proof. First, write

y = Xβ∗ + ε = X∗β∗ + (Xβ∗ −X∗β∗ + ε)

= X∗β∗ + (ηβ∗ + ε)

= X̂β∗ + (X∗ − X̂)β∗ + ηβ∗ + ε

= X̂β∗ + e,

where e := (X∗ − X̂)β∗ + ηβ∗ + ε. De�ne v̂0 = β̂H2SLS − β∗ and the Lagrangian L(β; λn) =
1

2n |y − X̂β|
2
2 + λn|β|1. Since β̂H2SLS is optimal, we have

L(β̂H2SLS ; λn) ≤ L(β∗; λn) =
1

2n
|e|22 + λn|β∗|1,

Some algebraic manipulation of the basic inequality above yields

0 ≤ 1

2n
|X̂v̂0|22 ≤

1

n
eT X̂v̂0 + λn

{
|β∗J(β∗)|1 − |(β

∗
J(β∗) + v̂0

J(β∗), v̂
0
J(β∗)c)|1

}
≤ |v̂0|1|

1

n
X̂T e|∞ + λn

{
|v̂0
J(β∗)|1 − |v̂

0
J(β∗)c |1

}
≤ λn

2

{
3|v̂0

J(β∗)|1 − |v̂
0
J(β∗)c |1

}
,

where the last inequality holds as long as λn ≥ 2| 1nX̂
T e|∞ > 0. Consequently, |v̂0|1 ≤ 4|v̂0

J(β∗)|1 ≤
4
√
k|v̂0

J(β∗)|2 ≤ 4
√
k|v̂0|2. Note that we also have

1

2n
|X̂v̂0|22 ≤ |v̂0|1|

1

n
X̂T e|∞ + λn

{
|v̂0
J(β∗)|1 − |v̂

0
J(β∗)c |1

}
≤ 2

√
k|v̂0|2λn.
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Since we assume in Lemma 3.1 that the random matrix Γ̂ = X̂T X̂ satis�es the RE1 condition (3)

with γ = 3, we have

|β̂H2SLS − β∗|2 ≤
c
′

δ

√
kλn.

6.2 Theorem 3.2

As discussed in Section 3, the l2-consistency of β̂H2SLS requires veri�cations of two conditions: (i)

Γ̂ = X̂T X̂ satis�es the RE1 condition (3) with γ = 3, and (ii) the term | 1nX̂
T e|∞ -

√
log p
n with

high probability. This is done via Lemmas 6.1 and 6.2.

Lemma 6.1 (RE condition): Under Assumptions 1.1, 3.1-3.3, and 3.5a, with the scaling n %

max(k2
1 log d, log p), we have

|X̂v0|22
n

≥ κ1|v0|22 − κ2 max

{
k1

√
log d

n
,

log d

n
,

log p

n

}
|v0|21, for all v0 ∈ Rp,

with probability at least 1− c1 exp(−c2 log max(p, d)) for some universal constants c1 and c2, where

κ1 and κ2 are constants depending on λmin(ΣX∗), λmin(ΣZ), ση, σX∗ , and maxj′ , j |E(x∗
ij′
, zij)|∞.

Proof. We have ∣∣∣∣∣v0T X̂
T X̂

n
v0

∣∣∣∣∣+

∣∣∣∣∣v0T

(
X∗TX∗ − X̂T X̂

n

)
v0

∣∣∣∣∣ ≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣ ,
which implies∣∣∣∣∣v0T X̂

T X̂

n
v0

∣∣∣∣∣ ≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
∣∣∣∣∣v0T

(
X∗TX∗ − X̂T X̂

n

)
v0

∣∣∣∣∣
≥

∣∣∣∣v0T X
∗TX∗

n
v0

∣∣∣∣−
∣∣∣∣∣X∗TX∗ − X̂T X̂

n

∣∣∣∣∣
∞

∣∣v0
∣∣2
1

≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
(∣∣∣∣∣X∗T (X̂ −X∗)

n

∣∣∣∣∣
∞

+

∣∣∣∣∣(X̂ −X∗)T X̂n

∣∣∣∣∣
∞

)∣∣v0
∣∣2
1

≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
∣∣∣∣∣X∗T (X̂ −X∗)

n

∣∣∣∣∣
∞

∣∣v0
∣∣2
1

−

∣∣∣∣∣(X̂ −X∗)TX∗n

∣∣∣∣∣
∞

∣∣v0
∣∣2
1
−

∣∣∣∣∣(X̂ −X∗)T (X̂ −X∗)
n

∣∣∣∣∣
∞

∣∣v0
∣∣2
1
.
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To bound the term
∣∣∣X∗T (X̂−X∗)

n

∣∣∣
∞
, let us �rst �x (j

′
, j) and bound the (j

′
, j) element of the matrix

X∗T (X̂−X∗)
n . Notice that

∣∣∣∣ 1nx∗Tj′ (x̂j − x∗j )

∣∣∣∣ =

∣∣∣∣∣
(

1

n

n∑
i=1

x∗
ij′
zij

)
(π̂j − π∗j )

∣∣∣∣∣
≤

∣∣π̂j − π∗j ∣∣1
∣∣∣∣∣ 1n

n∑
i=1

x∗
ij′
zij

∣∣∣∣∣
∞

Under Assumptions 3.2 and 3.3, we have that the random matrix zj ∈ Rn×dj is a sub-Gaussian with

parameters at most (ΣZj , σ
2
Z) for all j = 1, ..., p, and x∗

j′
is a sub-Gaussian vector with a parameter

at most σX∗ for every j
′

= 1, ..., p. Denote ZTj =
(
zT1j , ... z

T
nj

)
∈ Rdj×n for every j = 1, ..., p.

Therefore, by Lemma 6.8 and an application of union bound, we have

P
[
max
j′ , j
| 1
n
x∗T
j′
Zj − E(x∗

ij′
, zij)|∞ ≥ t

]
≤ 6p2d exp(−cnmin{ t2

σ2
X∗σ

2
Z

,
t

σX∗σZ
}),

and consequently as long as n % log max(p, d),

P

[
max
j′ , j
| 1
n
x∗T
j′
Zj − E(x∗

ij′
, zij)|∞ ≥ c0σX∗σZ

√
log max(p, d)

n

]
≤ c1 exp(−c2 log max(p, d)),

where c0, c1, and c2 are some universal constants. Hence, under Assumption 3.5a, we have, with

probability at least 1− c1 exp(−c2 log max(p, d)),∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

≤ cση
λmin(ΣZ)

k1

√
log d

n

(
max
j′ , j
|E(x∗

ij′
, zij)|∞ + c0σX∗σZ

√
log max(p, d)

n

)

≤ c3

ση maxj′ , j |E(x∗
ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n
,

where c3 is some positive constant chosen to be su�ciently large.

To bound the term
∣∣∣ (X̂−X∗)T (X̂−X∗)

n

∣∣∣
∞
, again let us �rst �x (j

′
, j) and bound the (j

′
, j) element

of the matrix (X̂−X∗)T (X̂−X∗)
n . Using the similar argument as above, we have, with probability at
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least 1− c1 exp(−c2 log max(p, d)) for some universal constants c1 and c2,∣∣∣∣∣(X̂ −X∗)T (X̂ −X∗)
n

∣∣∣∣∣
∞

= max
j′ , j

∣∣∣∣∣(π̂j′ − π∗j′ )T
(

1

n

n∑
i=1

zT
ij′
zij

)
(π̂j − π∗j )

∣∣∣∣∣
≤ max

j′ , j

(∣∣∣π̂j′ − π∗j′ ∣∣∣1 ∣∣π̂j − π∗j ∣∣1
∣∣∣∣∣ 1n

n∑
i=1

zT
ij′
zij

∣∣∣∣∣
∞

)

≤

(
cση

λmin(ΣZ)
k1

√
log d

n

)2(
max
j′ , j
|E(zij′ , zij)|∞ + c0σ

2
Z

√
log max(p, d)

n

)

≤ c3

σ2
η maxj′ , j |E(zij′ , zij)|∞

λ2
min(ΣZ)

k2
1

log d

n
,

where c3 is some positive constant chosen to be su�ciently large.

Putting everything together, under the scaling n % max(k2
1 log d, log p) and by Lemma 6.10, we

have∣∣∣∣∣v0T X̂
T X̂

n
v0

∣∣∣∣∣ ≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣
−

(
2c3

ση maxj′ , j |E(x∗
ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n
+ c4

σ2
η maxj′ , j |E(zij′ , zij)|∞

λ2
min(ΣZ)

k2
1

log d

n

)∣∣v0
∣∣2
1

≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
(
c5

ση maxj′ , j |E(x∗
ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n

)∣∣v0
∣∣2
1

≥ λmin(ΣX∗)

2

∣∣v0
∣∣2
2
− c0λmin(ΣX∗) max

{
σ4
X∗

λ2
min(ΣX∗)

, 1

}
log max(p, d)

n

∣∣v0
∣∣2
1

−

(
c5

ση maxj′ , j |E(x∗
ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n

)∣∣v0
∣∣2
1

where c5 is some positive constant chosen to be su�ciently large. Notice the last inequality can be

written in the form∣∣∣∣∣v0T X̂
T X̂

n
v0

∣∣∣∣∣ ≥ κ1|v0|22 − κ2 max

{
k1

√
log d

n
,

log d

n
,

log p

n

}
|v0|21.

�

In proving Lemma 3.1, upon our choice λn, we have shown

v̂ = β̂H2SLS − β∗ ∈ C(J(β∗), 3),
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which implies |v̂0|21 ≤ 16|v̂0
J(β∗)|

2
1 ≤ 16k2|v̂0

J(β∗)|
2
2. Therefore, if we have

1

n
max


c5

[
ση maxj′ , j |E(x∗

ij′
, zij)|∞

]2

λ2
min(ΣX∗)λ2

min(ΣZ)
k2

1k
2
2 log d, c0λmin(ΣX∗) max

{
σ4
X∗

λ2
min(ΣX∗)

, 1

}
k2 log max(p, d)

 = o(1),

i.e., the scaling
max(k21k

2
2 log d, k2 log p)
n = o(1), then,∣∣∣∣∣v̂0T X̂

T X̂

n
v̂0

∣∣∣∣∣ ≥ λmin(ΣX∗)

4

∣∣v̂0
∣∣2
2
,

which implies RE1 (3).

Lemma 6.2 (Upper bound on | 1nX̂
T e|∞): Under Assumptions 1.1, 3.2, 3.3, and 3.5a, with the

scaling n % max(k2
1 log d, log p), we have

| 1
n
X̂T e|∞ - |β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}

with probability at least 1− c1 exp(−c2 log min(p, d)) for some universal constants c1 and c2.

Proof. We have

1

n
X̂T e =

1

n
X̂T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
=

1

n
X∗T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
+

1

n
(X∗ − X̂)T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
.

Hence,

| 1
n
X̂T e|∞ ≤ | 1

n
X∗T (X̂ −X∗)β∗|∞ + | 1

n
X∗Tηβ∗|∞ + | 1

n
X∗T ε|∞ (6)

+ | 1
n

(X̂ −X∗)T (X̂ −X∗)β∗|∞ + | 1
n

(X∗ − X̂)Tηβ∗|∞ + | 1
n

(X∗ − X̂)T ε|∞.

We need to bound each of the terms on the right-hand-side of the above inequality. Let us �rst

bound | 1nX
∗T (X̂ −X∗)β∗|∞. We have

1

n
X∗T (X̂ −X∗)β∗ =


∑p

j=1 β
∗
j

1
n

∑n
i=1 x

∗
i1(x̂ij − x∗ij)

...∑p
j=1 β

∗
j

1
n

∑n
i=1 x

∗
ip(x̂ij − x∗ij)

 .
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For any j
′

= 1, ..., p, we have

|
p∑
j=1

β∗j
1

n

n∑
i=1

x∗
ij′

(x̂ij − x∗ij)| ≤ max
j′ , j
| 1
n

n∑
i=1

x∗
ij′

(x̂ij − x∗ij)||β∗|1

=

∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

|β∗|1.

In proving Lemma 6.1, we have shown, with probability at least 1− c1 exp(−c2 log max(p, d)),∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

≤ c
ση maxj′ , j |E(x∗

ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n
,

therefore,

| 1
n
X∗T (X̂ −X∗)β∗|∞ ≤ c

ση maxj′ , j |E(x∗
ij′
, zij)|∞

λmin(ΣZ)
|β∗|1k1

√
log d

n
.

The term | 1n(X̂ −X∗)T (X̂ −X∗)β∗|∞ can be bounded using a similar argument and we have, with

probability at least 1− c1 exp(−c2 log max(p, d)),

| 1
n

(X̂ −X∗)T (X̂ −X∗)β∗|∞ ≤ c
σ2
η maxj′ , j |E(zij′ , zij)|∞

λ2
min(ΣZ)

|β∗|1k2
1

log d

n
.

For the term | 1nX
∗Tηβ∗|∞, we have

| 1
n
X∗Tηβ∗|∞ ≤ max

j′ , j
| 1
n

n∑
i=1

x∗
ij′
ηij ||β∗|1

≤ cσX∗ση|β∗|1

√
log p

n
,

with probability at least 1− c1 exp(−c2 log p). The last inequality follows from Lemma 6.8 and the

assumption that E(zij′ηij) = 0 for all j
′
, j as well as Assumption 3.2 that ηj is an i.i.d. zero-mean

sub-Gaussian vector with the parameter σ2
η for j = 1, ..., p , and the random matrix zj ∈ Rn×dj is a

sub-Gaussian with parameters at most (ΣZj , σ
2
Z) for all j = 1, ..., p. For the term | 1n(X∗−X̂)Tηβ∗|∞,

we have, with probability at least 1− c1 exp(−c2 log max(p, d))),

| 1
n

(X∗ − X̂)Tηβ∗|∞ ≤ max
j′
|π̂j′ − π

∗
j′
|1 max

j′ , j
| 1
n

n∑
i=1

zT
ij′
ηij |∞|β∗|1

≤ c
σZσ

2
η maxj′ , j |E(x∗

ij′
, zij)|∞

λmin(ΣZ)
|β∗|1k1

√
log d

n

√
log max(p, d)

n
,

with c chosen to be su�ciently large. Again, the last inequality follows from Lemma 6.8 and the
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assumption that E(zij′ηij) = 0 for all j
′
, j as well as Assumption 3.2.

To bound the term | 1nX
∗T ε|∞, note under Assumptions 3.2 and 3.3 as well as the assumption

E(zijεi) = 0 for all j = 1, ..., p, again by Lemma 6.8,

| 1
n
X∗T ε|∞ ≤ cσX∗σε

√
log p

n
,

with probability at least 1− c1 exp(−c2 log p).

For the term | 1n(X∗ − X̂)T ε|∞, we have

| 1
n

(X∗ − X̂)T ε|∞ ≤ max
j
|π̂j − π∗j |1 max

j
| 1
n

n∑
i=1

zTijεi|∞

≤ c
σZσεση maxj′ , j |E(x∗

ij′
, zij)|∞

λmin(ΣZ)
k1

√
log d

n

√
log p

n
,

with probability at least 1− c1 exp(−c2 log min(p, d)).

Putting everything together, the claim in Lemma 6.2 follows. �

Under the scaling
max(k21k

2
2 log d, k2 log p)
n = o(1) and λn � k2 max

{
k1

√
log d
n ,

√
log p
n

}
(the k2 factor

in the choice of λn comes from the simple inequality |β∗|1 ≤ k2 maxj=1,...,p β
∗ by exploring the

sparsity of β∗), combining Lemmas 3.1, 6.1, and 6.2, we have

|β̂H2SLS − β∗|2 - ψ1|β∗|1 max

{√
k1k2

√
k1 log d

n
,

√
k2 log p

n

}
,

where ψ1 = max

{
ση max

j,j
′ |cov(x∗

1j
′ , z1j)|∞

λmin(ΣZ)λmin(ΣX∗ ) ,
σX∗ max(σε, ση)
λmin(ΣX∗ )

}
, which proves Theorem 3.2. �

6.3 Theorem 3.3

Again, we verify the conditions: i) Γ̂ = X̂T X̂ satis�es the RE1 condition (3) with γ = 3, and (ii)

the term | 1nX̂
T ε̂|∞ -

√
log p
n with high probability. This is done via Lemmas 6.3 and 6.4.

Lemma 6.3 (RE condition): Let r ∈ [0, 1]. Under Assumptions 1.1, 3.1, 3.3, 3.4, 3.5b, and

3.6, with the scaling n % k3−2r
1 log d and some universal constant c, we have

|X̂v0|22
n

≥

(
κ1 − cmax(b2b

−1
1 , b3b

−2
1 )k1−r

1

√
k1 log d

n

)
|v0|22−κ2

kr1 log max(p, d)

n
|v0|21, for all v0 ∈ Rp,
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with probability at least 1− c1 exp(−c2n) for some universal constants c1 and c2, where

κ1 =
λmin(ΣX∗)

2
, κ2 = c

′
λmin(ΣX∗) max

{
σ4
X∗

λ2
min(ΣX∗)

, 1

}
,

b1 =
λmin(ΣZ)

c′′ση
, b2 = max

{
σX∗σW , sup

v∈K(2s, p)×K(k1, d1)×...×K(k1, dp)

∣∣∣v0T
[
E(x∗

1j′
z1jv

j)
]
v0
∣∣∣} ,

b3 = max

{
σ2
W , sup

v∈K(2s, p)×K2(k1, d1)×...×K2(k1, dp)

∣∣∣v0T
[
E(vj

′
zT

1j′
z1jv

j)
]
v0
∣∣∣} .

Proof. First notice that∣∣∣∣∣v0T X̂
T X̂

n
v0

∣∣∣∣∣ ≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
∣∣∣∣∣v0T

(
X∗TX∗ − X̂T X̂

n

)
v0

∣∣∣∣∣
≥

∣∣∣∣v0T X
∗TX∗

n
v0

∣∣∣∣−
(∣∣∣∣∣v0T X

∗T (X̂ −X∗)
n

v0

∣∣∣∣∣+

∣∣∣∣∣v0T (X̂ −X∗)T X̂
n

v0

∣∣∣∣∣
)

≥
∣∣∣∣v0T X

∗TX∗

n
v0

∣∣∣∣−
∣∣∣∣∣v0T X

∗T (X̂ −X∗)
n

v0

∣∣∣∣∣
−

∣∣∣∣∣v0T (X̂ −X∗)TX∗

n
v0

∣∣∣∣∣−
∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)

n
v0

∣∣∣∣∣ .
To bound the above terms, I now apply a discretization argument similar to the idea in Loh and

Wainwright (2012). This type of argument is often used in statistical problems requiring manip-

ulating and controlling collections of random variables indexed by sets with an in�nite number

of elements. For the particular problem in this paper, I work with the product spaces K(2s, p) ×
K(k1, d1)×...×K(k1, dp) and K(2s, p)×K2(k1, d1)×...×K2(k1, dp). For s ≥ 1 and L ≥ 1, recall the

notation K(s, L) := {v ∈ RL | ||v||2 ≤ 1, ||v||0 ≤ s}. Given V j ⊆ {1, ..., dj} and V 0 ⊆ {1, ..., p}, de-
�ne SV j = {v ∈ Rdj : ||v||2 ≤ 1, J(v) ⊆ V j} and SV 0 = {v ∈ Rp : ||v||2 ≤ 1, J(v) ⊆ V 0}. Note that
K(k1, dj) = ∪|V j |≤k1SV j and K(2s, p) = ∪|V 0|≤2sSV 0 with s := 1

c
n

log max(p, d) min
{
λ2min(ΣX∗ )

σ4
X∗

, 1
}
.

The choice of s is explained in the proof for Lemma 6.10. If Vj = {tj1, ..., t
j
mj} is a 1

9 -cover of SV j

(V0 = {t01, ..., t0m0
} is 1

9 -cover of SV 0), for every vj ∈ SV j (v0 ∈ SV 0), we can �nd some tji ∈ Vj

(t0
i′
∈ V0) such that |4vj |2 ≤ 1

9 (|4v0|2 ≤ 1
9), where 4v

j = vj − tji (respectively, 4v0 = v0 − t0
i′
).

By Ledoux and Talagrand (1991), we can construct Vj with |Vj | ≤ 81k1 and |V0| ≤ 812s. Therefore,

for v0 ∈ K(2s, p), there is some SV 0 and t0
i′
∈ SV 0 such that

v0T X
∗T (X̂ −X∗)

n
v0 = (t0

i′
+ v0 − t0

i′
)T
X∗T (X̂ −X∗)

n
(t0
i′

+ v0 − t0
i′

)

= t0T
i′
X∗T (X̂ −X∗)

n
t0
i′

+ 24v0T X
∗T (X̂ −X∗)

n
t0
i′

+4v0T X
∗T (X̂ −X∗)

n
4v0
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with |4v0|2 ≤ 1
9 .

Recall for the (j
′
, j) element of the matrix X∗T (X̂−X∗)

n , we have

1

n
x∗T
j′

(x̂j − x∗j ) =

(
1

n

n∑
i=1

x∗
ij′
zij

)
(π̂j − π∗j ).

Let λmin(ΣZ)
cση

= b1. Notice that, under Assumptions 3.5b and 3.6, |π̂j − π∗j |2b1
√

n
k1 log d ≤ 1 and

|supp(π̂j − π∗j )| ≤ k1 for every j = 1, ..., p. De�ne π̄j = (π̂j − π∗j )b1
√

n
k1 log d and hence, π̄j ∈

K(k1, dj) = ∪|V j |≤k1SV j . Therefore, there is some SV j and t
j
i ∈ SV j such that

1

n
x∗T
j′
zj(π̂j − π∗j ) =

1

n
x∗T
j′
zj(t

j
i + π̄j − tji )b

−1
1

√
k1 log d

n

= b−1
1

√
k1 log d

n

(
1

n
x∗T
j′
zjt

j
i +

1

n
x∗T
j′
zj4vj

)
with |4vj |2 ≤ 1

9 .

Denote a matrix A by
[
Aj′j

]
, where the (j

′
, j) element of A is Aj′j . Write v = (v0, v1, ..., vp) ∈

SV := SV 0 × SV 1 × ...× SV p . Hence,∣∣∣∣∣v0T X
∗T (X̂ −X∗)

n
v0 − E(v0T X

∗T (X̂ −X∗)
n

v0)

∣∣∣∣∣

≤ sup
v∈SV

b−1
1

√
k1 log d

n

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣
≤ b−1

1

√
k1 log d

n
{max
i′ , i

∣∣∣∣t0Ti′ [ 1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
t0
i′

∣∣∣∣+ sup
v∈SV

∣∣∣∣t0Ti′ [ 1

n
x∗T
j′
zj4vj − E(x∗

1j′
z1j4vj)

]
t0
i′

∣∣∣∣
+ sup

v∈SV
2

∣∣∣∣4v0T

[
1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
t0
i′

∣∣∣∣+ sup
v∈SV

2

∣∣∣∣4v0T

[
1

n
x∗T
j′
zj4vj − E(x∗

1j′
z1j4vj)

]
t0
i′

∣∣∣∣
+ sup

v∈SV

∣∣∣∣4v0T

[
1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
4v0

∣∣∣∣+ sup
v∈SV

∣∣∣∣4v0T

[
1

n
x∗T
j′
zj4vj − E(x∗

1j′
z1j4vj)

]
4v0

∣∣∣∣}
≤ b−1

1

√
k1 log d

n
{max
i′ , i

∣∣∣∣t0Ti′ [ 1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
t0
i′

∣∣∣∣+ sup
v∈SV

1

9

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣
+ sup

v∈SV

2

9

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣+ sup
v∈SV

2

81

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣
+ sup

v∈SV

1

81

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣+ sup
v∈SV

1

729

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣},
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where the last inequality uses the fact that 94vj ∈ SV j and 94v0 ∈ SV 0 . Therefore,

sup
v∈SV

b−1
1

√
k1 log d

n

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j − E(x∗
1j′

z1jv
j)

]
v0

∣∣∣∣

≤ 729

458
b−1
1

√
k1 log d

n
max
i′ , i

t0T
i′

[
1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
t0
i′

≤ 2b−1
1

√
k1 log d

n
max
i′ , i

t0T
i′

[
1

n
x∗T
j′
zjt

j
i − E(x∗

1j′
z1jt

j
i )

]
t0
i′
.

Under Assumptions 3.3 and 3.4, we have that x∗
j′
is a sub-Gaussian vector with a parameter at most

σX∗ for every j
′

= 1, ..., p, and zjt
j
i := wj is a sub-Gaussian vector with a parameter at most σW ∗ .

An application of Lemma 6.8 and a union bound yields

P

(
sup
v∈SV

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j

]
v0 − v0T

[
E(x∗

1j′
z1jv

j)
]
v0

∣∣∣∣ ≥ t
)
≤ 812sk1812s2 exp(−cnmin(

t2

σ2
X∗σ

2
W

,
t

σX∗σW
)),

where the exponent 2sk1 in 812sk1 uses the fact that there are at most 2s non-zero components in

v0 ∈ SV 0 and hence only 2s out of p entries of v1, ..., vp will be multiplied by a non-zero scalar, which

leads to a reduction of dimensions. A second application of a union bound over the

(
dj

bk1c

)
≤ dk1

choices of V j and respectively, the

(
p

b2sc

)
≤ p2s choices of V 0 yields

P

(
sup

v∈K(2s, p)×K(k1, d1)×...×K(k1, dp)

∣∣∣∣v0T

[
1

n
x∗T
j′
zjv

j

]
v0 − v0T

[
E(x∗

1j′
z1jv

j)
]
v0

∣∣∣∣ ≥ t
)

≤ p2sd2sk1 · 2 exp(−cnmin(
t2

σ2
X∗σ

2
W

,
t

σX∗σW
))

≤ 2 exp(−cnmin(
t2

σ2
X∗σ

2
W

,
t

σX∗σW
) + 2sk1 log d+ 2s log p).

With the choice of s = s(r) := 1
c

n
kr1 log max(p, d) min

{
λ2min(ΣX∗ )

σ4
X∗

, 1
}
, r ∈ [0, 1] from the proof for

Lemma 6.10 and t = c
′
k1σX∗σW for some universal constant c

′ ≥ 1, we have∣∣∣∣∣v0T X
∗T (X̂ −X∗)

n
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∣∣∣∣∣
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(
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≤ c
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with probability at least 1 − c1 exp(−c2nk1) for some universal constants c1 and c2 chosen to be

su�ciently large. Therefore, we have∣∣∣∣∣v0T X
∗T (X̂ −X∗)

n
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∣∣∣∣∣ ≤
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≤ c
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,

where b2 = max
{
σX∗σW , supv∈K(2s, p)×K(k1, d1)×...×K(k1, dp)

∣∣∣v0T
[
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1j′
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j)
]
v0
∣∣∣}. Notice that the

term

sup
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∣∣∣v0T
[
E(x∗

1j′
z1jv

j)
]
v0
∣∣∣

is bounded above by the spectral norm of the matrix
[
E(x∗

1j′
z1jv

j)
]
for all vj ∈ K(k1, dj) and

j
′
, j = 1, ..., p.

The term
∣∣∣v0T (X̂−X∗)T (X̂−X∗)

n v0
∣∣∣ can be bounded using a similar argument. In particular, for

the (j
′
, j) element of the matrix (X̂−X∗)T (X̂−X∗)
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1
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j
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Combining with
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n
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n
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n
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+4v0T (X̂ −X∗)T (X̂ −X∗)
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after some tedious algebra, we obtain∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
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Hence,
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An application of Lemma 6.8 and a sequence of union bounds yields

P

(
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v×v′∈K(2s, p)×K2(k1, d1)×...×K2(k1, dp)
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[
1
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′
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j
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v0

∣∣∣∣ ≥ t
)
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σ4
W

,
t

σ2
W

) + 4sk1 log d+ 2s log p).

Under the choice of s = s(r) := 1
c

n
kr1 log max(p, d) min

{
λ2min(ΣX∗ )

σ4
X∗

, 1
}
, r ∈ [0, 1] from the proof for

Lemma 6.10 and t = c
′′
k1σ

2
W for some universal constant c

′′ ≥ 1, we have,∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n
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1
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with probability at least 1 − c1 exp(−c2nk1) for some universal constants c1 and c2 chosen to be

su�ciently large. Therefore, we have∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n

v0

∣∣∣∣∣ ≤
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∣∣∣v0T
[
E(vj

′
zT

1j′
z1jv

j)
]
v0
∣∣∣}. Notice that
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is bounded above by the spectral norm of the matrix
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E(vj
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j)
]
for all vj ∈ K(k1, dj) and

j = 1, ..., p.

By Lemma 6.9, the bound∣∣∣∣∣v0T X
∗T (X̂ −X∗)
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Similarly, the bound∣∣∣∣∣v0T (X̂ −X∗)T (X̂ −X∗)
n
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1

s
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Therefore, by choosing s = s(r) := 1
c

n
kr1 log max(p, d) min

{
λ2min(ΣX∗ )

σ4
X∗

, 1
}
, r ∈ [0, 1], under the scaling
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n % k3−2r
1 log d, we have∣∣∣∣∣v0T X̂

T X̂

n
v0

∣∣∣∣∣ ≥
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which can be written in the form
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n
|v0|21, for all v0 ∈ Rp.

�

Again, recall in proving Lemma 3.1, upon our choice λn, we have shown

v̂ = β̂H2SLS − β∗ ∈ C(J(β∗), 3),

and |v̂0|21 ≤ 16|v̂0
J(β∗)|

2
1 ≤ 16k2|v̂0

J(β∗)|
2
2. Therefore, if we choose the scaling
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1 log d, kr1k2 log d, kr1k2 log p
}

n
= o(1),

then, ∣∣∣∣∣v̂0T X̂
T X̂

n
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∣∣∣∣∣ ≥ c0λmin(ΣX∗)
∣∣v̂0
∣∣2
2
,

which implies RE1 (3). Because the argument for showing Lemma 6.1 and that it implies RE1 (3) also

works under the assumptions of Lemma 6.3, we can combine the scaling
max(k21k

2
2 log d, k2 log p)
n = o(1)

from the proof for Lemma 6.1 with the scaling
minr∈[0, 1] max{k3−2r

1 log d, kr1k2 log d, kr1k2 log p}
n = o(1) from

above to obtain a more optimal scaling requirement of the smallest sample size

1

n
min

{
max

{
k2

1k
2
2 log d, k2 log p

}
, min
r∈[0, 1]

max
{
k3−2r

1 log d, kr1k2 log d, kr1k2 log p
}}

= o(1),

which implies RE1 (3).

Lemma 6.4 (Upper bound on | 1nX̂
T e|∞): Under Assumptions 1.1, 3.2-3.4, 3.5b, and 3.6, with
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the scaling n % max(k1 log d, log p), we have
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with probability at least 1− c1 exp(−c2 log min(p, d)) for some universal constants c1 and c2.

Proof. Recall (6) from the proof for Lemma 6.2. Let us �rst bound | 1nX
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the matrix X∗T (X̂−X∗)
n can be rewritten as follows.

1

n
x∗T
j′

(x̂j − x∗j ) =
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With a similar argument as in the proof for Lemma 6.3, we obtain
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which implies, under the scaling
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With a similar argument as in the proof for Lemma 6.3, we obtain
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Therefore,
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With exactly the same discretization argument as above, we can show that, with probability at least

1− c1 exp(−c2 log min(p, d)),

| 1
n

(X∗ − X̂)Tηβ∗|∞ ≤ c
′
b−1
1 σησW |β∗|1

√
k1 log d

n
max

{√
k1 log d

n
,

√
log p

n

}
,

| 1
n

(X∗ − X̂)T ε|∞ ≤ c
′′
b−1
1 σεσW

√
k1 log d

n
max

{√
k1 log d

n
,

√
log p

n

}
.

For the rest of terms in (6), we can use the bounds provided in the proof for Lemma 6.2. In

particular, recall we have, with probability at least 1− c1 exp(−c2 log p),

| 1
n
X∗Tηβ∗|∞ ≤ c

′
σX∗ση|β∗|1

√
log p

n
,

| 1
n
X∗T ε|∞ ≤ c

′′
σX∗σε

√
log p

n
,

Putting everything together, the claim in Lemma 6.4 follows. �

Under the scaling

1

n
min

{
max

{
k2

1k
2
2 log d, k2 log p

}
, min
r∈[0, 1]

max
{
k3−2r

1 log d, kr1k2 log d, kr1k2 log p
}}

= o(1),

and

λn � k2 max

{√
k1 log d

n
,

√
log p

n

}
,

(9) yields ∣∣∣∣∣X∗T (X̂ −X∗)
n

∣∣∣∣∣
∞

≤ c

(
max
j′ , j

sup
vj∈K(k1, dj)

∣∣∣E(x∗
1j′

z1jv
j)
∣∣∣) b−1

1

√
k1 log d

n
,

(10) yields

∣∣∣∣∣(X̂ −X∗)T (X̂ −X∗)
n

∣∣∣∣∣
∞

≤ c′
max

j′ , j
sup

vj
′
∈K(k1, dj′ ), v

j∈K(k1, dj)

∣∣∣E(vj
′
zT

1j′
z1jv

j)
∣∣∣
 b−2

1

k1 log d

n
,
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and furthermore,

| 1
n
X∗Tηβ∗|∞ + | 1

n
(X∗ − X̂)Tηβ∗|∞ ≤ c

′′
σX∗ση|β∗|1

√
log p

n
,

| 1
n
X∗T ε|∞ + | 1

n
(X∗ − X̂)T ε|∞ ≤ c

′′′
σX∗σε

√
log p

n
.

Combining the bounds above with Lemmas 3.1 and 6.3, we have

|β̂H2SLS − β∗|2 - ψ2|β∗|1 max

{√
k2

√
k1 log d

n
,

√
k2 log p

n

}
,

where ψ2 = max

ση max
j
′
, j

sup
vj∈K(k1, dj)

∣∣∣∣cov(x∗
1j
′ , z1jv

j)

∣∣∣∣
λmin(ΣZ)λmin(ΣX∗ ) ,

σX∗ max(σε, ση)
λmin(ΣX∗ )

, which proves Theorem 3.3.�

6.4 Corollary 3.4, Theorems 3.5, and 3.6

Corollary 3.4 is obvious from inspecting the form of the bounds in Theorems 3.2 and 3.3. The

proof for Theorem 3.5 is completely identical to that for Theorem 3.2 except we will replace the

inequality |π̂j − π∗j |1 ≤
cση

λmin(ΣZ)k1

√
log dj
n by |π̂j − πj |1 ≤

√
k1M(d, k1, n). Also, the proof for

Theorem 3.6 is completely identical to that for Theorem 3.3 except we will replace the inequality

|π̂j − π∗j |2 ≤
cση

λmin(ΣZ)

√
k1 log d
n by |π̂j − πj |2 ≤M(d, k1, n).

6.5 Lemma 6.5

Lemma 6.5: Suppose the assumptions in Lemmas 6.1 and 6.2 (or, Lemmas 6.3 and 6.4) and

Assumptions 3.7 and 3.8 hold. Let J(β∗) = K, ΣKcK := E
[
X∗T1,KcX∗1,K

]
, Σ̂KcK := 1

nX
∗T
KcX∗K , and

Σ̃ := 1
nX̂

T
KcX̂K . Similarly, let ΣKK := E

[
X∗T1,KX

∗
1,K

]
, Σ̂KK := 1

nX
∗T
K X∗K , and Σ̃KK := 1

nX̂
T
KX̂K .

Then, the sample matrix 1
nX̂

T X̂ satis�es an analogous version of the mutual incoherence assumption,

with high probability in the sense that

P

[∥∥∥∥∥ 1

n
X̂T
KcX̂K

(
1

n
X̂T
KX̂K

)−1
∥∥∥∥∥

1

≥ 1− φ

4

]
≤ O

(
exp(−b n

k3
2

+ log p)

)
.

for some constant b.

Proof. I adopt the method used in Ravikumar, et. al. (2009), Lemma 6. Note that we can perform

the following decomposition

Σ̃KcKΣ̃−1
KK − ΣKcKΣ−1

KK = R1 +R2 +R3 +R4 +R5 +R6,
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where

R1 = ΣKcK [Σ̂−1
KK − Σ−1

KK ],

R2 = [Σ̂KcK − ΣKcK ]Σ−1
KK ,

R3 = [Σ̂KcK − ΣKcK ][Σ̂−1
KK − Σ−1

KK ],

R4 = Σ̂KcK [Σ̃−1
KK − Σ̂−1

KK ],

R5 = [Σ̃KcK − Σ̂KcK ]Σ̂−1
KK ,

R6 = [Σ̃KcK − Σ̂KcK ][Σ̃−1
KK − Σ̂−1

KK ].

By the incoherence assumption, we have

∥∥ΣKcKΣ−1
KK

∥∥
1
≤ 1− φ.

Hence, it su�ces to show that ||Ri||1 ≤ φ
6 for i = 1, ..., 3 and ||Ri||1 ≤ φ

12 for i = 4, ..., 6.

For the �rst term R1, we have

R1 = ΣKcKΣ−1
KK [Σ̂KK − ΣKK ]Σ̂−1

KK ,

Using the sub-multiplicative property (||AB||1 ≤ ||A||1||B||1) and the elementary inequality ||A||1 ≤√
a||A||2 for any symmetric matrix A ∈ Ra×a, we can bound R1 as follows:

||R1||1 ≤
∥∥ΣKcKΣ−1

KK

∥∥
1

∥∥∥Σ̂KK − ΣKK

∥∥∥
1

∥∥∥Σ̂−1
KK

∥∥∥
1

≤ (1− φ)
∥∥∥Σ̂KK − ΣKK

∥∥∥
1

√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2
,

where the last inequality follows from the incoherence assumption. Using bound (16) from Lemma

6.11, we have ∥∥∥Σ̂−1
KK

∥∥∥
2
≤ 2

λmin(ΣKK)

with probability at least 1 − c1 exp(−c2
n
k2

). Next, applying bound (12) from Lemma 6.11 with

ε = c√
k2
, with probability at least 1− 2 exp(−b n

k32
+ 2 log k2), we have

∥∥∥Σ̂KK − ΣKK

∥∥∥
1
≤ c√

k2
.

By choosing the constant c > 0 su�ciently small, we are guaranteed that

P[||R1||1 ≥
φ

6
] ≤ 2 exp(−b n

k3
2

+ log k2).
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For the second term R2, we �rst write

||R2||1 ≤
√
k2

∥∥Σ−1
KK

∥∥
2

∥∥∥Σ̂KcK − ΣKcK

∥∥∥
1

≤
√
k2

λmin(ΣKK)

∥∥∥Σ̂KcK − ΣKcK

∥∥∥
1
.

An application of bound (11) from Lemma 6.11 with ε = φ
6
λmin(ΣKK)√

k2
yields

P[||R2||1 ≥
φ

6
] ≤ 2 exp(−b n

k3
2

+ log(p− k2) + log k2).

For the third term R3, by applying bounds (11) and (13), with ε = φ
6
λmin(ΣKK)

b′
for (11) with b

′

chosen to be su�ciently large, and the fact that log k2 ≤ log(p− k2) yields

||R3||1 ≤
φ

6

with probability at least 1− c exp(−b n
k22

+ log(p− k2)).

Putting everything together, we conclude that

P[||Σ̂KcKΣ̂−1
KK ||1 ≥ 1− φ

2
] ≤ O

(
exp(−b n

k3
2

+ log p)

)
.

For the fourth term R4, we have, with probability at least 1− b′ exp(−b n
k32

+ log p),

||R4||1 ≤
∥∥∥Σ̂KcKΣ̂−1

KK

∥∥∥
1

∥∥∥Σ̃KK − Σ̂KK

∥∥∥
1

∥∥∥Σ̃−1
KK

∥∥∥
1

≤ (1− φ

2
)
∥∥∥Σ̃KK − Σ̂KK

∥∥∥
1

√
k2

∥∥∥Σ̃−1
KK

∥∥∥
2
,

where the last inequality follows from the bound on ||Σ̂KcKΣ̂−1
KK ||1 established previously. Using

bounds (16) and (23) (or (25)) from Lemma 6.12, we have∥∥∥Σ̃−1
KK

∥∥∥
2
≤ 2

λmin(Σ̂KK)
≤ 4

λmin(ΣKK)

with probability at least 1− c1 exp(−c2 log max(p, d)) (or, 1− c1 exp(−c2n)). Next, applying bound

(18) (or (21)) from Lemma 6.12 with ε
′

= c√
k2
, with probability at least 1− 2 exp(−b n

k32
+ 2 log k2),

we have ∥∥∥Σ̃KK − Σ̂KK

∥∥∥
2
≤ c√

k2
,

By choosing the constant c > 0 su�ciently small, we are guaranteed that

P[||R4||1 ≥
φ

12
] ≤ 2 exp(−b n

k3
2

+ 2 log k2).
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For the �fth term R5, we �rst write

||R5||1 ≤
√
k2

∥∥∥Σ̂−1
KK

∥∥∥
2

∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1

≤ 4
√
k2

λmin(ΣKK)

∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1
.

An application of bound (17) (or (20)) from Lemma 6.12 with ε = φ
12
λmin(ΣKK)√

k2
yields

P[||R5||1 ≥
φ

12
] ≤ 2 exp(−b n

k3
2

+ log(p− k2) + log k2).

For the sixth term R6, by applying bounds (17) and (19) (or, (20) and (22)), with ε = φ
12
λmin(ΣKK)

b′

for (17) (or (20)) with b
′
chosen to be su�ciently large, and the fact that log k2 ≤ log(p − k2), we

are guaranteed that

||R6||1 ≤
φ

12

with probability at least 1− c exp(−b n
k22

+ log(p− k2)).

Putting the bounds on R1 −R6 together, we conclude that

P[||Σ̃KcKΣ̃−1
KK ||1 ≥ 1− φ

4
] ≤ O

(
exp(−b n

k3
2

+ log p)

)
.

�

6.6 Theorems 3.7-3.8

The proof for the �rst claim in Theorems 3.7 and 3.8 is established in Lemma 6.6, which shows that

β̂H2SLS = (β̂J(β∗), 0) where β̂J(β∗) is the solution obtained in step 2 of the PDW construction. The

second and third claims are proved using Lemma 6.7. The last claim is a consequence of the third

claim.

Lemma 6.6: If the PDW construction succeeds, then under Assumption 3.8, the vector (β̂J(β∗), 0) ∈
Rp is the unique optimal solution of the Lasso.

Remark: The proof for Lemma 6.6 is given in Lemma 1 in Wainwright [add reference].

Lemma 6.7: Suppose Assumptions 1.1, 3.2, 3.3, 3.5a, 3.7, and 3.8 hold. With the choice of
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the tuning parameter

λn ≥
48(2− φ

4 )

φ
bσX∗σZ max

j′ , j
|cov(x∗

ij′
, zij)|∞|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}

� k2 max

{
k1

√
log d

n
,

√
log p

n

}
,

and under the condition k2 max

{
k1

√
log d
n ,

√
log p
n

}
→ 0, we have |µ̂Kc |∞ ≤ 1− φ

8 with probability

at least 1− c1 exp(−c2 log min(p, d)). Furthermore,

|β̂K − β∗K |∞ ≤

[
b|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

λmin(ΣKK)
,

with probability at least 1 − c1 exp(−c2 log min(p, d)). If Assumptions 1.1, 3.2-3.4, 3.5b, 3.6, and

3.8 hold, then with the choice of tuning parameter

λn ≥
48(2− φ

4 )

φ
bσX∗σZ max

j′ , j
sup

vj∈K(k1, dj)

∣∣∣E(x∗
1j′

z1jv
j)
∣∣∣ |β∗|1 max

{√
k1 log d

n
,

√
log p

n

}

� k2 max

{√
k1 log d

n
,

√
log p

n

}

and under the condition k2 max

{√
k1 log d
n ,

√
log p
n

}
→ 0, we have |µ̂Kc |∞ ≤ 1− φ

8 with probability

at least 1− c1 exp(−c2 log min(p, d)), and

|β̂K − β∗K |∞ ≤

[
b|β∗|1 max

{√
k1 log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

λmin(ΣKK)
,

with probability at least 1− c1 exp(−c2 log min(p, d)).

Proof. By construction, the sub-vectors β̂K , µ̂K , and µ̂Kc satisfy the zero-gradient condition in

the PDW construction. Recall e := (X − X̂)β∗ + ηβ∗ + ε from Lemma 3.1. With the fact that

β̂Kc = β∗Kc = 0, we have

1

n
X̂T
KX̂K

(
β̂K − β∗K

)
+

1

n
X̂T
Ke+ λnµ̂K = 0,

1

n
X̂T
KcX̂K

(
β̂K − β∗K

)
+

1

n
X̂T
Kce+ λnµ̂Kc = 0.
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From the equations above, by solving for the vector µ̂Kc ∈ Rp−k2 , we obtain

µ̂Kc = − 1

nλn
X̂T
KcX̂K

(
β̂K − β∗K

)
− X̂T

Kc

e

nλn
,

β̂K − β∗K = −
(

1

n
X̂T
KX̂K

)−1 X̂T
Ke

n
− λn

(
X̂T
KX̂K

n

)−1

µ̂K ,

which yields

µ̂Kc =
(

Σ̃KcKΣ̃−1
KK

)
µ̂K +

(
X̂T
Kc

e

nλn

)
−
(

Σ̃KcKΣ̃−1
KK

)
X̂T
K

e

nλn
.

By the triangle inequality, we have

|µ̂Kc |∞ ≤
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
1

+

∣∣∣∣X̂T
Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
1

∣∣∣∣X̂T
K

e

nλn

∣∣∣∣
∞
,

where I used the fact that |µ̂K |∞ ≤ 1. By Lemma 6.5, we have
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
1
≤ 1 − φ

4 with

probability at least 1− c exp(−b n
k32

+ log p). Hence,

|µ̂Kc |∞ ≤ 1− φ

4
+

∣∣∣∣X̂T
Kc

e

nλn

∣∣∣∣
∞

+
∥∥∥Σ̃KcKΣ̃−1

KK

∥∥∥
1

∣∣∣∣X̂T
K

e

nλn

∣∣∣∣
∞

≤ 1− φ

4
+

(
2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
.

Therefore, in order to show it su�ces to show that
(

2− φ
4

) ∣∣∣X̂T e
nλn

∣∣∣
∞
≤ φ

8 with high probability.

This result is established in Lemma 6.12. Thus, we have |µ̂Kc |∞ ≤ 1− φ
8 with high probability.

It remains to establish a bound on the l∞−norm of the error β̂K−β∗K . By the triangle inequality,
we have

|β̂K − β∗K |∞ ≤

∣∣∣∣∣∣
(
X̂T
KX̂K

n

)−1
X̂T
Ke

n

∣∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1
∥∥∥∥∥∥

1

≤

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1
∥∥∥∥∥∥

1

∣∣∣∣∣X̂T
Ke

n

∣∣∣∣∣
∞

+ λn

∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1
∥∥∥∥∥∥

1

,

Using bounds (16) and (23) (or (25)) from Lemma 6.11, we have∥∥∥∥∥∥
(
X̂T
KX̂K

n

)−1
∥∥∥∥∥∥

1

≤ 2
√
k2

λmin(Σ̂KK)
≤ 4

√
k2

λmin(ΣKK)
.
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By Lemma 6.2, we have, with probability at least 1− c1 exp(−c2 log min(p, d)),

| 1
n
X̂T e|∞ ≤ b|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}
.

By Lemma 6.4, we have, with probability at least 1− c1 exp(−c2 log min(p, d))),

| 1
n
X̂T e|∞ ≤ b|β∗|1 max

{√
k1 log d

n
,

√
log p

n

}
.

Putting everything together, we obtain

|β̂K − β∗K |∞ ≤

[
b|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

λmin(ΣKK)
,

or,

|β̂K − β∗K |∞ ≤

[
b|β∗|1 max

{√
k1 log d

n
,

√
log p

n

}
+ λn

]
4
√
k2

λmin(ΣKK)
,

with both probabilities at least 1− c1 exp(−c2 log min(p, d))), as claimed. �

6.7 Lemmas 6.8-6.13

Lemma 6.8: If X ∈ Rn×p1 is a zero-mean sub-Gaussian matrix with parameters (ΣX , σ
2
X), then

for any �xed (unit) vector v ∈ Rp1 , we have

P(
∣∣|Xv|22 − E[|Xv|22]

∣∣) ≥ nt ≤ 2 exp(−cnmin{ t
2

σ4
X

,
t

σ2
X

}).

Moreover, if Y ∈ Rn×p2 is a zero-mean sub-Gaussian matrix with parameters (ΣY , σ
2
Y ), then

P(|Y
TX

n
− cov(yi, xi)|max ≥ t) ≤ 6p1p2 exp(−cnmin{ t2

σ2
Xσ

2
Y

,
t

σXσY
}),

where xi and yi are the i
th rows of X and Y , respectively. In particular, if n % log p, then

P(|Y
TX

n
− cov(yi, xi)|max ≥ c0σXσY

√
log (max{p1, p2})

n
) ≤ c1 exp(−c2 log (max{p1, p2})).

Remark. Lemma 6.8 is Lemma 14 in Loh and Wainwright (2012).

Lemma 6.9: For a �xed matrix Γ ∈ Rp×p, parameter s ≥ 1, and tolerance τ > 0, suppose we

have the deviation condition

|vTΓv| ≤ τ ∀v ∈ K(2s).
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Then,

|vTΓv| ≤ 27τ

(
||v||22 +

1

s
||v||21

)
∀v ∈ Rp.

Remark. Lemma 6.9 is Lemma 12 in Loh and Wainwright (2012).

Lemma 6.10: Under Assumption 3.3, we have

|X∗v0|22
n

≥ κ1|v0|22 − κ2
kr1 log max(p, d)

n
|v0|21, for all v0 ∈ Rp, r ∈ [0, 1]

with probability at least 1−c1 exp(−c2n), where κ1 = λmin(ΣX∗ )
2 and κ2 = c0λmin(ΣX∗) max

{
σ4
X∗

λ2min(ΣX∗ )
, 1
}
.

Proof. First, we show

sup
v0∈K(2s, p)

∣∣∣∣v0T

(
X∗TX∗

n
− ΣX∗

)
v0

∣∣∣∣ ≤ λmin(ΣX∗)

54

with high probability. Under Assumption 3.3, we have that X∗ is sub-Gaussian with parameters

(ΣX∗ , σX∗) where ΣX∗ = E(X∗TX∗). Therefore, by Lemma 6.8 and a discretization argument, we

have

P

(
sup

v0∈K(2s, p)

∣∣∣∣v0T

(
X∗TX∗

n
− ΣX∗

)
v0

∣∣∣∣ ≥ t
)
≤ 2 exp(−c′nmin(

t2

σ4
X∗
,

t

σ2
X∗

) + 2s log p),

for some universal constants c
′
> 0. By choosing t = λmin(ΣX∗ )

54 and let

s = s(r) :=
1

c′
n

kr log max(p, d)
min

{
λ2

min(ΣX∗)

σ4
X∗

, 1

}
, r ∈ [0, 1],

where c
′
is chosen su�ciently small so that s ≥ 1, we get

P

(
sup

v0∈K(2s, p)

∣∣∣∣v0T

(
X∗TX∗

n
− ΣX∗

)
v0

∣∣∣∣ ≥ λmin(ΣX∗)

54

)
≤ 2 exp(−c2nmin(

λ2
min(ΣX∗)

σ4
X∗

, 1)).

Now, by Lemma 6.9 and the following substitutions

Γ− ΣX∗ =
X∗TX∗

n
− ΣX∗ , and τ :=

λmin(ΣX∗)

54
,

we obtain ∣∣∣∣v0T

(
X∗TX∗

n
− ΣX∗

)
v0

∣∣∣∣ ≤ λmin(ΣX∗)

2

(
||v0||22 +

1

s
||v0||21

)
,
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which implies

v0T X
∗TX∗

n
v0 ≥ v0TΣX∗v

0 − λmin(ΣX∗)

2

(
||v0||22 +

1

s
||v0||21

)
.

Again, with the choice of

s = s(r) :=
1

c′
n

kr log max(p, d)
min

{
λ2

min(ΣX∗)

σ4
X∗

, 1

}
, r ∈ [0, 1],

where c
′
is chosen su�ciently small so s ≥ 1, the claim follows. �

Lemma 6.11: Suppose Assumptions 1.1 and 3.8 hold. For any ε > 0 and constant c, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
1
≥ ε
}
≤ (p− k2)k2 · 2 exp(−cmin{ nε2

4k2
2σ

4
X∗
,

nε

2k2σ2
X∗
}), (11)

P
{∥∥∥Σ̂KK − ΣKK

∥∥∥
1
≥ ε
}
≤ k2

2 · 2 exp(−cmin{ nε2

4k2
2σ

4
X∗
,

nε

2k2σ2
X∗
}). (12)

Furthermore, under the scaling n % k2 log p, for constants b1 and b2, we have∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
1
≤ 1

λmin(ΣKK)
with probability at least 1− b1 exp(−b2

n

k2
). (13)

Proof. Denote the element (j
′
, j) of the matrix di�erence Σ̂KcK −ΣKcK by uj′j . By the de�nition

of the l1- operator norm, we have

P
{∥∥∥Σ̂KcK − ΣKcK

∥∥∥
1
≥ ε
}

= P

max
j′∈Kc

∑
j∈K
|uj′j | ≥ ε


≤ (p− k2)P

∑
j∈K
|uj′j | ≥ ε


≤ (p− k2)P

{
∃j ∈ K | |uj′j | ≥

ε

k2

}
≤ (p− k2)k2P

{
|uj′j | ≥

ε

k2

}
≤ (p− k2)k2 · 2 exp(−cmin{ nε2

4k2
2σ

4
X∗
,

nε

2k2σ2
X∗
}),

where the last inequality the deviation bound for sub-exponential random variables. Bound (12)

can be obtained in a similar way except that the pre-factor (p− k2) is replaced by k2. To prove the
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last bound (13), write∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
1

=
∥∥∥Σ−1

KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
1

=
√
k2

∥∥∥Σ−1
KK

[
ΣKK − Σ̂KK

]
Σ̂−1
KK

∥∥∥
2

=
√
k2

∥∥Σ−1
KK

∥∥
2

∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2

≤
√
k2

λmin(ΣKK)

∥∥∥ΣKK − Σ̂KK

∥∥∥
2

∥∥∥Σ̂−1
KK

∥∥∥
2
. (14)

To bound the terms
∥∥∥ΣKK − Σ̂KK

∥∥∥
2
and

∥∥∥Σ̂−1
KK

∥∥∥
2
in (14), note that we can write

λmin(ΣKK) = min
||h||2=1

hTΣKKh

= min
||h||2=1

hT Σ̂KKh+ hT (ΣKK − Σ̂KK)h

≤ hT Σ̂KKh+ hT (ΣKK − Σ̂KK)h (15)

where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̂KK . With a slight modi�cation of Lemma

6.9 by replacing X∗TX∗

n − ΣX∗ with ΣKK − Σ̂KK , and setting

s :=
1

b

n

k2 log p
min

{
λ2

min(ΣKK)

σ4
X∗

, 1

}
,

with b chosen su�ciently small so s ≥ 1, we have

hT
(

ΣKK − Σ̂KK

)
h ≤ λmin(ΣKK)

4
√
k2

(
1 +

k2 log p

n

)
with probability at least 1− b1 exp(−b2 n

k2
). Therefore, if n % k2 log p,

hT
(

ΣKK − Σ̂KK

)
h ≤ λmin(ΣKK)

4
√
k2

(
1 +

k2 log p

n

)
≤ λmin(ΣKK)

2
√
k2

,

λmin(Σ̂KK) ≥ λmin(ΣKK)− λmin(ΣKK)

4
√
k2

(
1 +

k2 log p

n

)
≥ λmin(ΣKK)

2
(16)

and consequently, ∥∥∥Σ̂−1
KK

∥∥∥
2
≤ 2

λmin(ΣKK)∥∥∥ΣKK − Σ̂KK

∥∥∥
2
≤ λmin(ΣKK)

2
√
k2

.
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Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
1
≤

√
k2

λmin(ΣKK)

λmin(ΣKK)

2
√
k2

2

λmin(ΣKK)
=

1

λmin(ΣKK)
.

with probability at least 1− b1 exp(−b2 n
k2

). �

Lemma 6.12: (i) Suppose the assumptions in Lemmas 6.1 and 6.2 hold. For any ε
′
> 0 and

constants c and c
′
, under the condition k1

√
log d
n → 0, we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1
≥ ε′

}
≤ (p−k2)k2 ·exp(−cnmin{ ε

′2

k2
2σ

2
X∗σ

2
Z

,
ε
′

k2σX∗σZ
}+c′ log p+log d), (17)

P
{∥∥∥Σ̃KK − Σ̂KK

∥∥∥
1
≥ ε′

}
≤ k2

2 · exp(−cnmin{ ε
′2

k2
2σ

2
X∗σ

2
Z

,
ε
′

k2σX∗σZ
}+ c

′
log p+ log d). (18)

Furthermore, if n % k2
1k

3
2 log d and k1k2

√
log d
n → 0, for constants b, c1, and c2, we have

∥∥∥Σ̃−1
KK − Σ̂−1

KK

∥∥∥
1
≤ b

λmin(ΣKK)
with probability at least 1− c1 exp(−c2 log max(p, d)). (19)

(ii) Suppose the assumptions in Lemmas 6.3 and 6.4 hold. For any ε
′
> 0 and constant c, under the

condition
√

k1 log d
n → 0, we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1
≥ ε′

}
≤ (p−k2)k2 · 2 exp(−cnmin(

ε
′2

k2
2σ

2
X∗σ

2
W

,
ε
′

k2σX∗σW
) +k1 log d+ 2 log p),

(20)

P
{∥∥∥Σ̃KK − Σ̂KK

∥∥∥
1
≥ ε′

}
≤ k2

2 · 2 exp(−cnmin(
ε
′2

k2
2σ

2
X∗σ

2
W

,
ε
′

k2σX∗σW
) + k1 log d+ 2 log p). (21)

Furthermore, if n % max{k2
1k2 log d, k

3/2
2 log d, k

3/2
2 log p} and max{k1

√
log d
n , k2

log max(p, d)
n } → 0, for

constants b, c1, and c2, we have∥∥∥Σ̃−1
KK − Σ̂−1

KK

∥∥∥
1
≤ b

λmin(ΣKK)
with probability at least 1− c1 exp(−c2n). (22)
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Proof. Denote the element (j
′
, j) of the matrix di�erence Σ̃KcK − Σ̂KcK by wj′j . Using the same

argument as in Lemma 6.11, under the condition k1

√
log d
n → 0, we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1
≥ ε′

}
≤ (p− k2)k2P

{
|wj′j | ≥

ε
′

k2

}

≤ (p− k2)k2 · exp(−cnmin{ ε
′2

σ2
X∗σ

2
Z

,
ε
′

σX∗σZ
}+ c

′
log p+ log d),

where the last inequality follows from the bounds on
∣∣∣ (X̂−X∗)TX∗n

∣∣∣
1
and

∣∣∣ (X̂−X∗)T (X̂−X∗)
n

∣∣∣
1
in the

proof for Lemma 6.1 and the identity

1

n

(
Σ̃KcK − Σ̂KcK

)
=

1

n
X∗TKc(X̂K −X∗K) +

1

n
(X̂Kc −X∗Kc)TX∗K +

1

n
(X̂Kc −X∗Kc)T (X̂K −X∗K).

Bound (18) can be obtained in a similar way except that the pre-factor (p− k2) is replaced by k2.

To prove bound (19), by applying the same argument as in Lemma 6.11, we have

∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
1
≤

√
k2

λmin(Σ̂KK)

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2

≤ 2
√
k2

λmin(ΣKK)

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2
,

where the last inequality comes from bound (16). To bound the terms
∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2
and

∥∥∥Σ̃−1
KK

∥∥∥
2
,

we have, again

λmin(Σ̂KK) ≤ hT Σ̃KKh+ hT (Σ̂KK − Σ̃KK)h

≤ hT Σ̃KKh+ k2

∣∣∣Σ̂KK − Σ̃KK

∣∣∣
∞

≤ hT Σ̃KKh+ bk1k2

√
log d

n
,

where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̃KK . The last inequality follows from the

bounds on
∣∣∣ (X̂−X∗)TX∗n

∣∣∣
∞

and
∣∣∣ (X̂−X∗)T (X̂−X∗)

n

∣∣∣
∞

from the proof for Lemma 1 with probability at

least 1− c1 exp(−c2 log max(p, d)). Therefore, if n % k2
1k

3
2 log d and k1k2

√
log d
n → 0, then we have

λmin(Σ̃KK) ≥ λmin(Σ̂KK)− k1k2

√
log d

n
≥ λmin(Σ̂KK)

2
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=⇒
∥∥∥Σ̃−1

KK

∥∥∥
2
≤ 2

λmin(Σ̂KK)
, (23)

and
∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2
≤ bλmin(Σ̂KK)√

k2
. (24)

Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ̃−1

KK

∥∥∥
1
≤ 2

√
k2

λmin(ΣKK)

bλmin(Σ̂KK)√
k2

2

λmin(Σ̂KK)
=

b
′

λmin(ΣKK)
.

with probability at least 1− c1 exp(−c2 log max(p, d)).

For Part (ii) of Lemma 6.12, we can bound the terms using results from Lemma 6.3 instead of

Lemma 6.1. Denote the element (j
′
, j) of the matrix di�erence Σ̃KcK − Σ̂KcK by wj′j . Using the

same argument as in Lemma 6.11, under the condition
√

k1 log d
n → 0, we have

P
{∥∥∥Σ̃KcK − Σ̂KcK

∥∥∥
1
≥ ε′

}
≤ (p− k2)k2P

{
|wj′j | ≥

ε
′

k2

}

≤ (p− k2)k2 · 2 exp(−cnmin(
ε
′2

k2
2σ

2
X∗σ

2
W

,
ε
′

k2σX∗σW
) + k1 log d+ 2 log p),

where the last inequality follows from the bounds (9)-(10) and the identity

1

n

(
Σ̃KcK − Σ̂KcK

)
=

1

n
X∗TKc(X̂K −X∗K) +

1

n
(X̂Kc −X∗Kc)TX∗K +

1

n
(X̂Kc −X∗Kc)T (X̂K −X∗K).

Bound (21) can be obtained in a similar way except that the pre-factor (p− k2) is replaced by k2.

To prove the last bound (22), by applying the same argument as in Lemma 6.11, we have

∥∥∥Σ̂−1
KK − Σ−1

KK

∥∥∥
1
≤

√
k2

λmin(Σ̂KK)

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2

≤ 2
√
k2

λmin(ΣKK)

∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2

∥∥∥Σ̃−1
KK

∥∥∥
2
,

where the last inequality comes from bound (16). Again, we have

λmin(Σ̂KK) ≤ hT Σ̃KKh+ hT (Σ̂KK − Σ̃KK)h

where h ∈ Rk2 is a unit-norm minimal eigenvector of Σ̃KK . By bounds (7) and (8) and choosing
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s = 1
c

n
log max(p, d) min

{
λ2min(ΣX∗ )

σ4
X∗

, 1
}
, we have

hT
(

Σ̂KK − Σ̃KK

)
h ≤ 27bk1

√
log d

n
(|h|22 +

1

s
|h|21)

≤ b1 max{k1

√
log d

n
, k2

log max(p, d)

n
}|h|22

with probability at least 1 − c1 exp(−c2n). Therefore, if n % max{k2
1k2 log d, k

3/2
2 log d, k

3/2
2 log p}

and max{k1

√
log d
n , k2

log max(p, d)
n } → 0, then we have

λmin(Σ̃KK) ≥ λmin(Σ̂KK)− b1 max{k1

√
log d

n
, k2

log max(p, d)

n
} ≥ λmin(Σ̂KK)

2

=⇒
∥∥∥Σ̃−1

KK

∥∥∥
2
≤ 2

λmin(Σ̂KK)
, (25)

and
∥∥∥Σ̂KK − Σ̃KK

∥∥∥
2
≤ b2λmin(Σ̂KK)√

k2
. (26)

Putting everything together, we have

∥∥∥Σ̂−1
KK − Σ̃−1

KK

∥∥∥
1
≤ 2

√
k2

λmin(ΣKK)

b2λmin(Σ̂KK)√
k2

2

λmin(Σ̂KK)
=

b3
λmin(ΣKK)

.

with probability at least 1− c1 exp(−c2n). �

Lemma 6.13: (i) Suppose Assumptions 1.1, 3.2, 3.3, and 3.5a hold. With the choice of the tuning

parameter

λn ≥
48(2− φ

4 )

φ
bσX∗σZ max

j′ , j
|cov(x∗

ij′
, zij)|∞|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}

� k2 max

{
k1

√
log d

n
,

√
log p

n

}

and under the condition k2 max

{
k1

√
log d
n ,

√
log p
n

}
→ 0, we have

(
2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
≤ φ

8
,

with probability at least 1− c1 exp(−c2 log max(p, d)). (ii) Suppose Assumptions 1.1, 3.2-3.4, 3.5a,
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and 3.6 hold. Then the same result can be obtained with the choice of tuning parameter

λn ≥
48(2− φ

4 )

φ
bσX∗σZ max

j′ , j
sup

vj∈K(k1, dj)

∣∣∣E(x∗
1j′

z1jv
j)
∣∣∣ |β∗|1 max

{√
k1 log d

n
,

√
log p

n

}

� k2 max

{√
k1 log d

n
,

√
log p

n

}

and the condition k2 max

{√
k1 log d
n ,

√
log p
n

}
→ 0.

Proof. Recall from the proof for Lemma 6.2,

1

n
X̂T e =

1

n
X̂T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
=

1

n
X∗T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
+

1

n
(X∗ − X̂)T

[
(X∗ − X̂)β∗ + ηβ∗ + ε

]
.

Hence,

| 1

nλn
X̂T e|∞ ≤ | 1

nλn
X∗T (X̂ −X∗)β∗|∞ + | 1

nλn
X∗Tηβ∗|∞ + | 1

nλn
X∗T ε|∞ (27)

+ | 1

nλn
(X̂ −X∗)T (X̂ −X∗)β∗|∞ + | 1

nλn
(X∗ − X̂)Tηβ∗|∞ + | 1

nλn
(X∗ − X̂)T ε|∞.

Again, for any j
′

= 1, ..., p, we have

|
p∑
j=1

β∗j
1

nλn

n∑
i=1

x∗
ij′

(x̂ij − x∗ij)| ≤ max
j′ , j
| 1

nλn

n∑
i=1

x∗
ij′

(x̂ij − x∗ij)||β∗|1

=

∣∣∣∣∣X∗T (X̂ −X∗)
nλn

∣∣∣∣∣
∞

|β∗|1

≤ max
j′ , j

∣∣π̂j − π∗j ∣∣1
∣∣∣∣∣ 1

nλn

n∑
i=1

x∗
ij′
zij

∣∣∣∣∣
∞

|β∗|1.

Hence, by applying the same argument as in the proof for Lemma 6.1, we have

P
[
max
j′ , j
| 1
n
x∗T
j′
Zj − cov(x∗

ij′
, zij)|∞ ≥ λn

]
≤ 6p2d exp(−cnmin{ λ2

n

σ2
X∗σ

2
Z

,
λn

σX∗σZ
}).
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Therefore as long as

λn ≥
48(2− φ

4 )

φ
bσX∗σZ max

j′ , j
|cov(x∗

ij′
, zij)|∞|β∗|1 max

{
k1

√
log d

n
,

√
log p

n

}

� k2 max

{
k1

√
log d

n
,

√
log p

n

}
,

with b chosen to be su�ciently large, under the scaling k2 max

{
k1

√
log d
n ,

√
log p
n

}
→ 0, we have

| 1

nλn
X∗T (X̂ −X∗)β∗|∞ ≤

φ

48(2− φ
4 )
,

with probability at least 1 − c1 exp(−c2 log max(p, d)). With the same choice of λn and under the

scaling k2 max

{
k1

√
log d
n ,

√
log p
n

}
→ 0, we also have

| 1

nλn
(X̂ −X∗)T (X̂ −X∗)β∗|∞ -

√
log d

n
= o(1) ≤ φ

48(2− φ
4 )
.

For the term | 1
nλn

X∗Tηβ∗|∞, we have

| 1

nλn
X∗Tηβ∗|∞ ≤ max

j′ , j
| 1

nλn

n∑
i=1

x∗
ij′
ηij ||β∗|1.

Notice that

P
[
max
j′ , j

1

n
x∗T
j′
ηj ≥ λn

]
≤ 6p2 exp(−cnmin{ λ2

n

σ2
X∗σ

2
η

,
λn

σX∗ση
}).

where I have used the assumption that E(zij′ηij) = 0 for all j
′
, j. With the same choice of λn and

under the scaling k2 max

{
k1

√
log d
n ,

√
log p
n

}
→ 0, we have

| 1

nλn
X∗Tηβ∗|∞ ≤

φ

48(2− φ
4 )
,

with probability at least 1− c1 exp(−c2 log max(p, d)). We also have

| 1

nλn
(X∗ − X̂)Tηβ∗|∞ -

√
log d

n
= o(1) ≤ φ

48(2− φ
4 )
.
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Similarly, for the term | 1
nλn

X∗T ε|∞ and | 1
nλn

(X∗ − X̂)T ε|∞, we can show

| 1
n
X∗T ε|∞ ≤ φ

48(2− φ
4 )
,

| 1
n

(X∗ − X̂)T ε|∞ .

√
log d

n
= o(1) ≤ φ

48(2− φ
4 )
,

with probability at least 1− c1 exp(−c2 log max(p, d)).

Putting everything together, we have(
2− φ

4

) ∣∣∣∣X̂T e

nλn

∣∣∣∣
∞
≤ φ

8
,

with probability at least 1− c1 exp(−c2 log max(p, d)).

The proof for Part (ii) of Lemma 6.13 follows from the similar argument for proving Part (i)

except that we bound the terms | 1
nλn

X∗T (X̂ − X∗)β∗|∞ and | 1
nλn

(X̂ − X∗)T (X̂ − X∗)β∗|∞ using

the discretization type of argument as in the proof for Lemma 6.4. �
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