
Some Notes on Regression

• What is regression?
Bivariate regression. Slope:

β̂ =
1
n

∑
i(Xi −X)(Yi − Y )
1
n

∑
i(Xi −X)2

(1)

Intercept:

α̂ = Y − β̂X(2)
Multivariate regression.
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{
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∑
i

XiX
′
i

}−1
1
n

∑
i

XiYi(3)

In matrix notation, we write

β̂ =
(
X′X

)−1 X′Y(4)
but there is no real difference among these ideas. They are all just different ways of writing the same basic
notion. In many ways the first way of writing it conveys the essence of the thing most simply.
• What does regression measure?
Consider the first formulation (i.e., equation (1)). Averages measure expectations in the population. So it
seems reasonable to guess that β̂ and α̂ measure

β =
C[Xi, Yi]
V [Xi]

(5)

α = E[Yi]− βE[Xi](6)
That turns out to be right. What do I mean by “measures”? I mean that if you have a really honking big
sample, β̂ would be really close to β and that if the sample got yet bigger and yet bigger, β̂ would be drawn
inexorably closer and closer to β. This is what is meant by the notion of a probability limit. It is like the limits
you learned about in high school (e.g., the limit as n goes to infinity of 1/n is zero), except that the definition
is more complicated because β̂ is a random variable. But the essential idea is the same. Here is the definition.
Let Zn be a random variable. We say that Zn has probability limit µ when for every ε > 0

lim
n→∞

P (|Zn − µ| < ε) = 1(7)

That is, there is always a sample size big enough that Zn will get within any pre-specified tolerance of µ with
probability 1. When Zn has probability limit µ, we write

plim Zn = µ(8)
Usually the easiest way to show that Zn has probability limit µ is to establish that the expectation of Zn is µ
and that the variance of Zn goes to zero as n grows. This relies on a fancy result, proved in some textbooks
and not in others, that convergence in mean square implies convergence in probability. Sometimes one has to
resort to a direct proof, but if we need to worry about that I’ll let you know.

The leading case is the sample mean, X = 1
n

∑
iXi. The expectation of X is E[Xi] and the variance is

V [Xi]/n. Since the variance collapses to zero, X has probability limit of its expectation, which is E[Xi]. The
same thing turns out to be true of the sample covariance: it has probability limit of the population covariance.
Since the sample variance is a sample covariance, the same must be true of the sample variance. This means that
the numerator and denominator in (1) are converging to the population covariance and population variance,
respectively. But what about the ratio?

Here is a really useful fact about probability limits: they are continuous, in the following specific sense. Sup-
pose g(z) is a function that is continuous at z = µ and suppose that Zn is a random variable with probability
limit µ. Then the probability limit of g(Zn) is g(µ). This is not true of expectations, i.e., it is not generally
true that E[g(Zn)] is equal to g(E[Zn]).

Using plims and the knowledge that the ratio a/b is continuous in a and b as long as b isn’t zero, we know
that β̂ has probability limit β and then α̂ has probability limit α.
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• Do we like what it measures?
Often people fight about the meaning of regressions. One camp tends to write down a model for the outcome

Yi = α+ βXi + εi(9)
where we assume that the data are independent and identically distributed and moreover that E[εi|Xi] = 0
(and possibly that V [εi|Xi] = σ2). If you haven’t seen this before, this is called the “classical linear regression
model” by most authors.

Note what this model assumes. The assumption that E[εi|Xi] = 0 implies immediately that
E[Yi|Xi] = α+ βXi(10)

This is not really a “result”. This is simply another interpretation of the assumption. What does it mean? It
means that not only are you running the regression, you believe that you have the correct functional form. In
particular, you believe the relationship between Yi and Xi is linear. You don’t believe in any curvature. Maybe
you didn’t realize you believed that when you wrote down the classical linear regression model. Rule # 17 of
being a Ph.D. student is this: know what you are assuming. For the rules prior to # 17, see me in office hours.

So this first camp will say things like “my estimates are consistent for the parameters of the conditional
expectation...” Sounds good!

The second camp feels guilty about assumptions. They all feel like an old joke of Jim Powell’s, which goes like
this. Setup line: What is the estimator consistent for? Punchline: It is consistent for its plim. So this second
camp tends to assume that they are just running a regression and that we have all agreed to be interested in
what regression measures. Apparently, if you are in the first camp, you are also in the second camp, since you
like what regression measures. And yes, people from the two camps do break bread together. On a typical day,
I am grumpy, and I am in the second camp.

Here is a standard argument that β and α, defined by

β =
C[Xi, Yi]
V [Xi]

(11)

α = E[Yi]− βE[Xi](12)
are interesting. One can show that an equivalent definition of α and β is

(α, β) = arg min
a,b

E
[
(Yi − a− bXi)

2
]

(13)

Now decompose

(Yi − a− bXi)
2 = (Yi −m(Xi))

2 + (m(Xi)− a− bXi)
2 + 2 (Yi −m(Xi)) (m(Xi)− a− bXi)(14)

where m(Xi) is the conditional expectation of Yi given Xi. I will take expectations of both sides of this expres-
sion. Since expectation is linear, that means the expectation of the left is the sum of the expectations of the
3 terms on the right. The third term, it turns out, has zero expectation. To see why, recall the law of iterated
expectations: E[Yi] = E[E[Yi|Xi]]. Then we have

E [(Yi −m(Xi)) (m(Xi)− a− bXi)] = E [E [(Yi −m(Xi)) (m(Xi)− a− bXi) |Xi]](15)
= E [(m(Xi)− a− bXi)E [(Yi −m(Xi)) |Xi]](16)
= E [(m(Xi)− a− bXi)× 0] = 0(17)

This is analogous to the Pythagorean Theorem you learned about in high school, but where (like probability
limits being like “regular” limits) everything is a bit fancier. Because of this, we have the following fundamental
conclusion

E
[
(Yi − a− bXi)

2
]

= E
[
(Yi −m(Xi))

2
]

+ E
[
(m(Xi)− a− bXi)

2
]

(18)

Going back to (12), this means that one way to view regression is that it gives predictions that are the best
linear approximation to the conditional expectation m(Xi).
• Inference, or the Artist Formerly Known as “How Do I Get Good Standard Errors”?

Often we spend so much time talking about how to get coefficients and how to interpret them that we forget
to talk about how to measure their precision. This is not good. A lot of the reported estimates that you see
in the literature have an exaggerated sense of their self-worth. This leads cynics (you know who you are) to
require t-ratios to be above 5 before they pay any attention, unless they detect that the student is concerned
enough to be careful in computing standard errors. See notes2.pdf for more on this topic.
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• Why are we using regression?
One answer to this question is that we are approximating the conditional expectation. Another answer to

this question is that we are trying to estimate the coefficient β, because (1) we are interested in the causal
question of how much a hypothetical one unit increase in Xi will increase Yi, on average, and (2) we believe
that Xi is “exogenous” in the sense that Xi causes Yi, Yi does not cause Xi and there is no common factor
causing both. One way to guarantee that Xi is exogenous is to have Xi be randomized. But most of the time
we are willing to run regressions where Xi is not randomized.

What happens if Xi is measured with error? Consider just the bivariate regression. Suppose the following
model for the measurement errors

Yi = α+ βX∗i + εi(19)
Xi = X∗i + ui(20)

where X∗i is the “true” covariate and Xi is the observed covariate, ui and εi are independent of one another
and independent of X∗i . That is, the measurement error is here conceptualized as something like a transcription
error, or a machine that has some glitches to it that are idiosyncratic. Situations are sometimes more compli-
cated and ui can then be systematically related to X∗i in which case conclusions are more contingent on the
exact nature of the relationship. You only observe Yi and Xi. The classical conclusion is this:

plim β̂ =
C[Xi, Yi]
V [Xi]

=
C[Xi, α+ βX∗i + εi]

V [Xi]
= β

C[Xi, X
∗
i ]

V [Xi]
= β

C[X∗i + ui, X
∗
i ]

V [Xi]
= β

V [X∗i ]
V [Xi]

(21)

which is generally smaller in magnitude that β. This is often called “attenuation bias”.
Suppose we are using regression for prediction or forecasting. Then attenuation bias is a feature: we discount

variation in a covariate because it contains measurement errors. Suppose we are interested in estimating the
causal effect of Xi on Yi. Then attenuation bias is a bug: we want to measure β and are sad that β̂ measures
something smaller than it.
• Linear Approximations and Discrete Covariates

Suppose Xi is like education in that it takes on a small number of values but could also be viewed as “continu-
ous”. One great way to estimate the conditional expectation of Yi given Xi in such a situation (where I am think-
ing you have lots of data) is to compute averages of Yi separately for each value of Xi. Call those estimates π̂. We
can obtain those estimates from a regression with a series of dummies for the values ofXi. IfXi takes on J values,
then we need J dummies. Run a regression of Yi on the J dummies and exclude the constant. Then we have π̂ in
the coefficient vector and if, for example, the data are iid, then we have the variance matrix for π̂. Let the esti-
mated variance matrix for π̂ be denoted Σ̂. Then we can view the π̂ as belonging in their own data set with J ob-
servations. Associated with the jth row of this data set is π̂j , the estimated coefficient for the jth value of Xi, and
xj , the actual value. We could then run a regression of π̂j on a constant and xj . The constant and slope from this
regression measure the same thing as if we had run the regression of Yi on Xi in the original microdata. Interest-
ing. An important difference is that in the grouped data with J observations, we know the variance of the obser-
vations (from the first step regression). So we can actually view this as a GMM problem that is overidentified. We
are fitting J estimates to 2 parameters (α and β). In particular, one might consider being efficient and estimating

arg min
a,b

(π̂ − a− bx)′ Σ̂−1 (π̂ − a− bx)(22)

where here x denotes the column vector with jth element xj . The minimized value of this objective function is
distributed chi-square with J−2 degrees of freedom under the null hypothesis of linear conditional expectation.

We give a fuller treatment to this kind of idea after we have reviewed GMM, later in the term.


