1 Model

Latent variables:

Yi(0) = ao+ByXi+ey (1)
Yi(1) = a1+ B X; +e} (2)
T = ar+ X —u; (3)

where we asssume that the pair (E?, ezl) is mean zero and independent of X;, that u; is mean zero and indepen-

dent of X;, and further that the pair (¢Y,¢}) is independent of u;. We never observe any of Y;(0), Y;(1), or T}.
Rather, we see (X;,T;,Y;), where

T, = 1T} >0) 4)
Y, = TY;(1)+ (1-T;)Yi(0) (5)
Parameters:
ATE = E[Y;(1) - Y;(0)] (6)
TOT = E[Y,(1) - Y(0)|T; = 1] (7)
2 Regression
Plug in (1) and (2) into (5):
Yi = Yi(0)+ T (Y1) - Yi(0)) (®)
= o+ By Xi + (a1 — a)Ti + (b1 — Bo) Ti Xi + & 9)

where g; = &) + T; (e} —€Y) is a composite (heteroskedastic) error term. This motivates a regression of Y; on

X;, T;, and their interactions. Then note that

ATE = E[Y;(1) = Y;(0)] = a1 — ap + (81 — Bo)'E[X;] (10)
TOT = E[Y;(1) - Y;(0)] = a1 — ag + (81 — Bo) E[Xi|T; = 1] (11)
so that a natural way to estimate these parameters is to estimate the regression in (9) and then to use the
sample mean to compute E[X;] or E[X;|T; = 1].
3 Reweighting

The reason why we have to control for X; in the regression approach is that treatment is associated with X;. An
alternative approach is to use Bayes’ Rule to reweight observations so that the covariates are similar between
treatment and control. Note that for any function g(-), we have
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Elg(X)|T =1 — E[“Xl)l_po@ ) Tzo} (12)
B |0(X) 417 1] E[g<xz>1_p(xi)n o] E [g(X,)] (13)

where p(X;) = P(T; = 1]|X;) is the propensity score, or the conditional probability of treatment given covariates.
Equation (12) means that we can reweight the sample so that the distribution of X; among control units is the
same as the distribution of X; among treated units. Equation (13) means that we can reweight the sample so that
the distribution of X; among control units is the same as the distribution of X; in the population, and likewise
for treated units. Both of these equations are easy to prove using iterated expectations. For example, we have

— B |BITXI(0)  | =B o000 253 =Bl (15)
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The other results follow from these kinds of calculations, and you can check them yourself. That suggests the
following estimators for TOT (the case of ATE is analogous):
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where we assume p(X;) and ¢ are known, which is almost always wrong. More practically, people implement
this idea as
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where the weights are additionally forced to sum to one. This is a good idea. Here is the standard algorithm
for estimating a reweighting estimator for TOT:

1. logit T X1 X2 X3 X4
2. predict double phat
3. gen double W=phat/(1-phat)
4. reg Y T [aw=W]
The reweighting estimate of TOT is the coefficient on T in this regression. Usually people take the standard

error on treatment as the standard error. If n > 300 or so, this works quite well. You can prove that to yourself
using the techniques from the last problem set.

4 Matching

Keep the focus on TOT, as before. Here, the idea is to use various notions of distance to “match” observations.
Let W (i, j) denote the proximity of unit ¢ to unit j. The definition of W (4, j) depends on the matching approach
in question. These estimators can be written as

5 _ SLn{n-vo) -
B ZZ‘L:ITi
where o . 2?21(1_7})W(@>j)}/}'
WO = e W) 1

is the imputed counterfactual outcome for unit 7.

Programming matching estimators is a pain, because you have to loop over observations, which is slow. You
also typically need to choice tuning parameters, such as a bandwidth. So you often end up resorting to cross-
validation to choose them, which means recomputing the matching estimator, or an analogue of it, again and
again. In other words, if looping over observations is slow, then cross-validating an estimator that loops over
observations is really slow. (But computers are fast, so maybe this isn’t such a big deal.)



