
1 Model

Latent variables:

Yi(0) = α0 + β′0Xi + ε0i (1)
Yi(1) = α1 + β′1Xi + ε1i (2)
T ∗i = αT + β′TXi − ui (3)

where we asssume that the pair (ε0i , ε
1
i ) is mean zero and independent of Xi, that ui is mean zero and indepen-

dent of Xi, and further that the pair (ε0i , ε
1
i ) is independent of ui. We never observe any of Yi(0), Yi(1), or T ∗i .

Rather, we see (Xi, Ti, Yi), where

Ti = 1(T ∗i > 0) (4)
Yi = TiYi(1) + (1− Ti)Yi(0) (5)

Parameters:

ATE = E[Yi(1)− Yi(0)] (6)
TOT = E[Yi(1)− Yi(0)|Ti = 1] (7)

2 Regression

Plug in (1) and (2) into (5):

Yi = Yi(0) + Ti (Yi(1)− Yi(0)) (8)
= α0 + β′0Xi + (α1 − α0)Ti + (β1 − β0)′TiXi + εi (9)

where εi = ε0i + Ti

(
ε1i − ε0i

)
is a composite (heteroskedastic) error term. This motivates a regression of Yi on

Xi, Ti, and their interactions. Then note that

ATE = E[Yi(1)− Yi(0)] = α1 − α0 + (β1 − β0)′E[Xi] (10)
TOT = E[Yi(1)− Yi(0)] = α1 − α0 + (β1 − β0)′E[Xi|Ti = 1] (11)

so that a natural way to estimate these parameters is to estimate the regression in (9) and then to use the
sample mean to compute E[Xi] or E[Xi|Ti = 1].

3 Reweighting

The reason why we have to control for Xi in the regression approach is that treatment is associated with Xi. An
alternative approach is to use Bayes’ Rule to reweight observations so that the covariates are similar between
treatment and control. Note that for any function g(·), we have

E [g(Xi)|Ti = 1] = E
[
g(Xi)

p(Xi)
1− p(Xi)

1− q
q

∣∣∣∣Ti = 0
]

(12)

E
[
g(Xi)

q

p(Xi)
|Ti = 1

]
= E

[
g(Xi)

1− q
1− p(Xi)

∣∣∣∣Ti = 0
]

= E [g(Xi)] (13)

where p(Xi) = P (Ti = 1|Xi) is the propensity score, or the conditional probability of treatment given covariates.
Equation (12) means that we can reweight the sample so that the distribution of Xi among control units is the
same as the distribution ofXi among treated units. Equation (13) means that we can reweight the sample so that
the distribution of Xi among control units is the same as the distribution of Xi in the population, and likewise
for treated units. Both of these equations are easy to prove using iterated expectations. For example, we have

E
[
g(Xi)

q

p(Xi)

∣∣∣∣Ti = 1
]

=
1
q

E
[
Tig(Xi)

q

p(Xi)

]
= E

[
E
[
Tig(Xi)

1
p(Xi)

∣∣∣∣Xi

]]
(14)

= E
[
E [Ti|Xi] g(Xi)

1
p(Xi)

]
= E

[
g(Xi)

p(Xi)
p(Xi)

]
= E [g(Xi)] (15)
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The other results follow from these kinds of calculations, and you can check them yourself. That suggests the
following estimators for TOT (the case of ATE is analogous):

θ̂ =
∑n

i=1 TiYi∑n
i=1 Ti

−
∑n

i=1(1− Ti)
p(Xi)

1−p(Xi)
1−q

q Yi∑n
i=1(1− Ti)

(16)

where we assume p(Xi) and q are known, which is almost always wrong. More practically, people implement
this idea as

θ̂N =
∑n

i=1 TiYi∑n
i=1 Ti

−
∑n

i=1(1− Ti)
bp(Xi)

1−bp(Xi)
Yi∑n

i=1(1− Ti)
bp(Xi)

1−bp(Xi)

(17)

where the weights are additionally forced to sum to one. This is a good idea. Here is the standard algorithm
for estimating a reweighting estimator for TOT:
1. logit T X1 X2 X3 X4
2. predict double phat
3. gen double W=phat/(1-phat)
4. reg Y T [aw=W]

The reweighting estimate of TOT is the coefficient on T in this regression. Usually people take the standard
error on treatment as the standard error. If n > 300 or so, this works quite well. You can prove that to yourself
using the techniques from the last problem set.

4 Matching

Keep the focus on TOT, as before. Here, the idea is to use various notions of distance to “match” observations.
Let W (i, j) denote the proximity of unit i to unit j. The definition of W (i, j) depends on the matching approach
in question. These estimators can be written as

θ̃ =

∑n
i=1 Ti

{
Yi − Ŷi(0)

}
∑n

i=1 Ti
(18)

where
Ŷi(0) =

∑n
j=1(1− Tj)W (i, j)Yj∑n

j=1(1− Tj)W (i, j)
(19)

is the imputed counterfactual outcome for unit i.
Programming matching estimators is a pain, because you have to loop over observations, which is slow. You

also typically need to choice tuning parameters, such as a bandwidth. So you often end up resorting to cross-
validation to choose them, which means recomputing the matching estimator, or an analogue of it, again and
again. In other words, if looping over observations is slow, then cross-validating an estimator that loops over
observations is really slow. (But computers are fast, so maybe this isn’t such a big deal.)
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