
Econ 202A, 10/30/2012 Guest Lecture

Professor Romer covered already consumption theory under these assump-

tions:

� certainty, constant r

� uncertainty about labor income, constant r

Today we do a third case: certainty and variable r.

Adding uncertainty takes us into asset pricing, which Professor Romer

will cover later.

Unlike the book, I will look at the case of continuous time.

I will use two solution methods, one analogous to section 8.1 and one

based on optimal control theory, and show they give the same answer.

Notation

T : time horizon

Y (t): labor income

C(t): consumption

A(t): �nancial (non-human capital) wealth

r(t): instantaneous rate of interest

The individual problem is to maximizeZ T

0

e��tu[C(t)]dt;

where u0(C) > 0; u00(C) < 0; limt!0 u
0(C) =1, subject to

_A(t) = r(t)A(t) + Y (t)� C(t);

where the individual takes A(0) and the paths fr(t)g; fY (t)g as given.
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Parallel to what was done in the (discrete-time) setting of the government

budget constraint earlier in the course, we work with the constraint that

the PDV of consumption � PDV of lifetime resources. De�ne the market

discount factor as

R(t) �
Z t

0

r(�)dt

(so that e�R(t) is the present value at time 0 of a unit of output available at

time t). Then the lifetime budget constraint isZ T

0

e�R(t)C(t)dt � A(0)+
Z T

0

e�R(t)Y (t)dt: (�)

Approach I: Calculus

We know it is optimal for the budget constraint to hold with equality.

Set up the Lagrangean

L =
Z T

0

e��tu[c(t)]dt+ �

�
A(0) +

Z T

0

e�R(t)Y (t)dt�
Z T

0

e�R(t)C(t)dt

�
:

The �rst-order condition for C(t) is

e��tu0[C(t)] = �e�R(t)

where I have canceled the dt that multiplies both sides.

Note that � is not a function of time here because there is a single con-

straint, which depends on the PDV of lifetime resources and not its particular

time-path. And notice that only if R(t) = �t for every t is the path of con-

sumption going to be �at.

Since

u0[C(t)] = �e�t�R(t);
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we can write

lnu0[C(t)] = ln�+ �t�R(t) = ln�+ �t�
Z t

0

r(�)dt

and so we may di¤erentiate using the chain rule and the fundamental theorem

of calculus to get
u"[C(t)]

u0[C(t)]
_C(t) = � � r(t))

_C(t)

C(t)
=

�
�C(t)u"[C(t)]

u0[C(t)]

��1
[r(t)� �] : (��)

We saw this same relationship in the Cass-Koopmans-Ramsey model.

Recall that

�C(t)u
00[C(t)]

u0[C(t)]
= coe¢ cient of relative risk aversion

= inverse of intertemporal substitution elasticity.

When this coe¢ cient is big, the utility function is more sharply curved, mean-

ing that the marginal utility of consumption drops o¤quickly as consumption

rises.

So consumption is:

� rising whenever r > �

� falling whenever r < �

� stationary whenever r = � (this last being our old result).

The response of consumption growth to a deviation between r and �

depends on the curvature of the utility function. It is smaller when the utility

function is more highly curved (low intertemporal substitution elasticity).

Of course, at an optimum, lifetime budget constraint (�) has to hold as
an equality. Using that PDV budget constraint and the equation for _C just

derived, one could solve explicitly for C(0). In general the solution is messy,

but I will derive it later in a simpli�ed special (in�nite-horizon) case.

3



It is worth making explicit something that may or may not be obvious

to you already, just in case it is not. The way we derive (�) from the �ow

constraint _A(t) = r(t)A(t) + Y (t)�C(t) is by integrating it forward in time
to solve for A(t) (in analogy to the iterative forward substitution procedure

we followed in discrete time). The solution is

A(t) =

Z t

0

[Y (s)� C(s)] eR(t�s)ds+ eR(t)A(0);

where R(t� s) �
R t
s
r(�)d� ; as you can check by di¤erentiating:Multiply this

through by e�R(t), rearrange, and conclude thatZ t

0

C(s)e�R(s)ds+ e�R(t)A(t) = A(0) +

Z t

0

Y (s)e�R(s)ds:

Setting t = T , we see that the constraint that A(T ) � 0 is the same as con-
straint (�). Furthermore, requiring that constraint (�) holds as an equality
is exactly the same as requiring that A(T ) = 0:

Aside on the in�nite-horizon case: As you saw earlier, applying the no-

Ponzi game condition that

lim
t!1

e�R(t)A(t) � 0

leads to equation (�) above with T = 1; which states that the PDV of

C cannot exceed the PDV of Y plus initial �nancial assets A(0): (Recall

Chapter 2.2 of Romer, Advanced Macroeconomics.)

Approach II: Maximum Principle

You have seen this before. The optimal control problem is to �nd

max
fC(t)g

Z T

0

e��tu[C(t)]dt;

subject to the same "givens" as before and

_A(t) = r(t)A(t) + Y (t)� C(t);
A(T ) � 0;
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where the second inequality constraint states that you cannot plan to die

owing money.

We write the Hamiltonian as:

H[C(t); A(t); �(t)] = e��t fu[C(t)] + �(t) [r(t)A(t) + Y (t)� C(t)]g :

As we saw earlier, the costate variable �(t) can be interpreted as the mar-

ginal contribution of the state variable (�nancial wealth) to lifetime utility,

discounted to date t, whereas e��t�(t) is the same value discounted to the

initial time 0.

Necessary conditions for an optimum are:

� optimality of the control C: @H
@C

= 0; 8t, u0[C(t)] = �(t); 8t

� equation of motion for the costate: d
dt

�
e��t�(t)

�
= �@H

@A
; 8t, _�(t)

�(t)
=

� � r(t); 8t

� terminal necessary condition: �(T )A(T ) = 0:

The �rst of these three equations says that if I raise consumption by a

little bit at time t and reap u0[C(t)], the opportunity cost is the marginal
value of wealth at that same time t, �(t): The second equation is actually the

intertemporal Euler equation (in continuous time). If I reduce consumption

and raise saving on date 0 by dC, thereby forgoing u0[C(0)]dC; then if I am

optimizing, it does not matter at what time t I choose to consume the pro-

ceeds of my saving (including interest), thereby reaping e��tu0[C(t)]eR(t)dC:

In particular, then, e��tu0[C(t)]eR(t) is constant for all t and equal to u0[C(0)]:

As a result,
d

dt

�
eR(t)��tu0[C(t)]

	
= 0;

and if we denote u0[C(t)] = �(t); the result is

_�(t)

�(t)
= � � r(t);
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as derived above. As for the third necessary condition, we saw how to derive

it in discrete time earlier using the Kuhn-Tucker theorem, and unsurprisingly,

it holds in continuous time as well. Unless the terminal marginal value of

wealth, �(T ), is zero, it can never be optimal to die holding positive wealth

�one should plan to drive terminal wealth A(T ) down precisely to zero. As

I pointed out above, this means that constraint (�) must hold as an equality.
In the in�nite-horizon setting, the analogous terminal condition to �(T )A(T ) =

0 (recall the Cass-Koopmans-Ramsey model) is the transversality condition

that limt!1 e
��t�(t)A(t) = 0: The intertemporal Euler equation, however,

tells us that u0[C(0)] = eR(r)��tu0[C(t)] = eR(t)��t�(t), 8t; so we may express
the transversality condition equivalently as

u0[C(0)] lim
t!1

e�R(t)A(t) = 0, lim
t!1

e�R(t)A(t) = 0:

We can conclude that whereas the no-Ponzi game condition imposes the

constraint that limt!1 e
�R(t)A(t) � 0, the transversality condition tells us

that this constraint will have to bind at an optimum. Thus, also for the case

T !1, constraint (�) must hold as an equality at an optimum.
Observe �nally that

_�(t)

�(t)
=
u00[C(t)]

u0[C(t)]
_C(t): Thus, our two approaches yield

precisely the same result.

An In�nite-Horizon Example

Let us take

u(C) =
C1�

1
�

1� 1
�

and also assume that r is �xed, but not necessarily equal to �: We also let

T !1. Then the lifetime budget constraint (which we can assume will hold
as an equality at an optimum) is:Z 1

0

e�rtC(t)dt = A(0) +

Z 1

0

e�rtY (t)dt:
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Optimal consumption, we know follows

_C(t)

C(t)
= � (r � �) :

How can we calculate C(0) in this case? (C won�t be constant unless

r = �:) Notice that the preceding di¤erential equation has the solution

C(t) = C(0)e�(r��)t:

Substitution into the preceding intertemporal budget constraint givesZ 1

0

e�rtC(0)e�(r��)tdt = C(0)

Z 1

0

e[(��1)r���]tdt

= A(0) +

Z 1

0

e�rtY (t)dt;

or, integrating the expression
R1
0
e[(��1)r��]tdt; assuming that (� � 1) r��� <

0;

C(0) = [�� � (� � 1)r]
�
A(0) +

Z 1

0

e�rtY (t)dt

�
:

Here we see very clearly the substitution, income, and wealth e¤ects on

consumption (and saving) of a change in the interest rate r.

But you are probably wondering: why did we have to assume that (� � 1) r�
�� < 0? This inequality will always hold if � < 1, but if � > 1 and r is su¢ -

ciently higher than �, it may not, in which case we cannot compute a �nite

value for the integral
R1
0
e[(��1)r���]tdt. The problem is that consumption

optimally is growing at the proportional rate �(r � �) and if this exceeds
r, so that (� � 1) r � �� � 0, then the present value of consumption is not
finite: the budget constraint is therefore violated.

By investigating a little further this case in which (� � 1) r� �� � 0, we
can gain an independent veri�cation of our optimal consumption function, as

well as some other insights. To simplify notation, let Y (t) = Y , a constant,

for all t, so that the PDV of income is simply Y=r.
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Let�s assume that consumption grows at the arbitrary proportional rate

g < r, so that the PDV of consumption is well de�ned.1 I would like to

�gure out what level of lifetime utility this policy yields. In this case, date t

consumption will be C(t) = C(0)egt and therefore from the budget constraint,

C(0) = (r � g)
�
A(0) +

Y

r

�
:

On the other hand, lifetime utility is

U(0) =
C(0)1�

1
�

1� 1
�

Z 1

0

e��t
�
egt
�1� 1

� dt =

Z 1

0

e[(1�
1
� )g��]dt:

If also
�
1� 1

�

�
g � � < 0; this implies that lifetime utility is

U(0) =
(r � g)1� 1

��
1� 1

�

� �
� �

�
1� 1

�

�
g
� �A(0) + Y

r

�1� 1
�

:

Take natural logs and di¤erentiate with respect to g to get

d lnU(0)

dg
= �

�
1� 1

�

�
1

r � g +
�
1� 1

�

�
1

� �
�
1� 1

�

�
g
;

so that in the case � > 1 that is of interest here,

d lnU(0)

dg
/
(r � g)�

�
� �

�
1� 1

�

�
g
�

(r � g)
�
� �

�
1� 1

�

�
g
� =

�(r � �)� g
� (r � g)

�
� �

�
1� 1

�

�
g
� ;

where the symbol/ signi�es "is proportional to." Notice �rst that settingd lnU(0)
dg

=

0 yields the implication that if it so happens that �(r � �) < r, then the

optimum growth rate of consumption � the one that maximizes U(0) � is

g = �(r � �), which we derived above. This is yet another way of deriving
our earlier results.

1You should recall from equation (��) that this will be true only if the utility function
is in the CRRA class (equivalently, constant intertemporal substitution elasticity).
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But if �(r� �) � r; we have a problem. In that case, setting g = �(r� �)
would violate the intertemporal budget constraint, so we cannot plan to have

that high a growth rate of consumption. So what should the consumer do?

To see the answer, notice that when ��
�
1� 1

�

�
g > 0 as we have assumed,

the preceding proportionality shows that lifetime utility is increasing in g for

any g < r � �(r� �): So in this case, no optimum value of g exists. In other
words, for any value of g that is consistent with the intertemporal budget

constraint, we can always increase utility by choosing g to be slightly higher.2

The lesson of this example is that when addressing a maximization prob-

lem, one cannot always take it for granted that a maximum actually exists!

In the case � > 1; the utility function u(C) is not bounded above, so it is

plausible there might be conditions in which the in�nite-horizon maximiza-

tion problem cannot be solved. In contrast, u(C) is bounded above (by 0)

when � < 1, and in that case there is a well-de�ned maximum.

2Notice that if g = �(r��) < r, then
�
1� 1

�

�
g�� = (��1)(r��)�� = (��1)r��� < 0,

so the utility integral necessarily converges.
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