- CONTINUOUS-TIME STOCHASTIC PROCESSES AND SOME
APPLICATIONS

M. Obstfeld
Let {X(t)} be a stochastic process such that
AX(t) = X(1) - X(t-1) ~ N(u,0?)

Case of interest: AX(t) can be written as a sum (integral) of
very small (inﬁnitesimal) independent normal increments.

Carve up interval [t-1, t] into n dlSJ oint subintervals of length
h = 1/n.

Forevery1 =1, 2,..., n, let v(i) be N(0,1) with Ev(i)v(j) =
0 for 1 # j. If defined by

AX(t) = X ,[ph + oh?v(i)],
AX(t) is of the desired form: EAX(t) = ﬁyh = p and
VarAX(t) = ¢°Z 2, Ev()v()h = ¢?Z,Ev(i)’n = o2
Take the limit of this process as h - 0; we denote it as
dX(t) = pdt + odz(t)

where dz(t) = lim,_,h'"?v(t). The result is called a Gausszan
diffusion process.



Interpretation:

® If o = 0, we are back in case where X(t) follows a
differentiable path with constant slope . Under uncertainty,
however, X(t) follows a continuous-time random walk with
predictable drift (per unit time) of p and variance (per unit
time) of o 2.

® This stochastic process is nowhere differentiable. An
expression like dz(t)/dt, which one might be tempted to
define as the limit as h = 0 of [z(t+h) - z(t)]/h, has no
meaning because the latter limit does not exist. This is why
we write the diffusion in differential form as dX(t).

® To see this point about differentiability more technically,
notice that X(t+h) - X(t) is normal with variance ho 2, by
construction. Therefore, [X(t+h) - X(t)]/h has variance ¢?/h,
which - o« as h —= 0.

® More general forms of Gaussian diffusion process are
easy to write down and analyze, for example,
dX = uX,t)dt + o(X,t)dz,

in which the conditional mean and variance can evolve
through time. (Observe the simplified notation.)
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‘Multiplication rules for stochastic differentials:

Just as in ordinary differential calculus, terms of order hk
disappear for k > 1.

For example, let’s compute dy/dx for y = x2: it is the limit
as h - 0 of 1/h times (x + h)?- x? = 2xh + h2. We can
ignore the squared h in computing the derivative, 2x.

Thus, in stochastic calculus,
(dt)* = lim,,h? = 0.

That 1s, the squared time interval goes to zero faster than the
time interval, and therefore can be ignored.

Terms like the product (dz)(dt) are limits of h*?v and also go
to zero faster than h. Thus, we write

(d2)(dt) = 0.

Terms like (dz)* are of order h, because they are limits of
hv®. They cannot be ignored. In fact, because the variance
of hv * is of order h?, it goes to zero in the continuous-time
limit and so hv ? converges in probability to its mean, dt, as
h — 0. Thus, we have the rule

(dz)? = dt.



1t6’s Lemma

Let X(t) follow a diffusion and let f(®) be a twice
continuously differentiable function. We’d like to know the
process followed by the stochastic process f]X(t)].

If X(t) were a purely deterministic function of time, the
chain rule of calculus would give us the answer that

df(X) = {'(X)dX = f(X)udt.

It may be tempting simply to plug in for dX as above when
X(t) follows a diffusion, too. This would give

f'X)udt + f'(X)odz

But the conditional mean of df(X) is nor f'(X)udt, i.e., it is
not true in general that E[df(X)] = f'(X)E(dX). This follows
- from Jensen’s inequality. If f(X) is strictly convex, E[df(X)]
will be somewhat higher than this formula indicates, and if
f(X) is strictly concave that mean will be somewhat lower.
Only if f(X) is linear will the "naive" formula above work.

In general, It6’s Lemma (in its univariate form) states that
df(X) = I'X)dX + »f"(X)(dX)?2.

The extra term captures the convexity or concavity of f(X).



Heuristic argument for It6’s Lemma

By Taylor’s Theorem, 3 a number £(h) € [0, 1] such that

fIX(t+h)] - fIXO] = FIXOIX(t+h) - X©)]

+ Lf{X() + EM)[X(t+h) - XO]HX(t+h) - X ()] 2.

The first right-hand side terms goes to f'(X)dX as h - 0.
The second right-hand side term goes to Y4f"(X)(dX) 2.

In the case we’ve been looking at,

(dX)2 = p?(@dt)2 + 2uo(dz)(d) + oX(dz)? = o2dt.

Thus, It6’s Lemma takes the form

dffX(t)] = {'[X®)]pdt + f'[X(t)]edz + WLI"[X(t)]o 2dt.

® Exercise What if the function is f(X,t)?




TARGET-ZONE MODELS OF EXCHANGE RATES

Consider the exchange-rate model described by
x(t) = k(t) + «E[dx(t)]/dt
where x(t) 1s the spot exchange rate, k(t) the "fundamentals."

As a general fact, the equilibrium exchange rate (absent
rational bubbles) is

x(t) = (1/c) | €& E,[k(s)]ds.

But if k(t) follows a complex process, this integral can be
hard to compute directly.

Easy example: Free float with random-walk fundamentals

Let k(t) follow dk = odz always. Then Ek(s) = k(t) for all
s = t. Thus,

x(t) = k(t)



Target-zone case:

The fundamentals k(t) follow dk = odz only so long as k(t) -
stays in the range [k;, k°]. At lower (upper) boundary, the
authorities intervene to raise (lower) k by the amount 6 > 0.
Furthermore, [k,, k°] and & are chosen to restrict the
exchange rate to the target zone [x,, x°]. We need a short cut

to calculate the integral above!
Let’s assume the solution is of the form

x = S(k).

By It6’s Lemma, as long as we are not at an intervention
point (that is, strictly within [k,, k°]), dk = odz, so

dx = S'(k)dk + %S"(k)(dk)* = S’'(k)odz + %S”"(k)d*dt

Combining this with the first equation of the model above,“.

SK) =k + %S"(K)ad?

This is just a differential equation in k. Its general solution
takes the form (A, and A, are arbitrary constants):

Gk) =k + A + Ae™
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Plugging this into the preceding differential equation shows
that A must be given by
N = 2/adH)!”,

For example, if A; = A, = 0, we have G(k) = k. But that
cannot be the solution S(k), because it would imply discrete
anticipated capital losses (gains) at k° (at k).
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The value-matching boundary conditions

To avoid such arbitrage opportunities we need boundary
conditions on S(k) that rule them out. These boundary
conditions are what pin down the constants A; and A,.

The appropriate value-matching conditions are:

S = SK° - 8)

S(ko) = S(ky + 6)
To solve, let’s make life easier by assuming the symmetric

case in which k; = -k®. Then A; = -A, = A, which we can
solve for using

k® + Alexp(Ak®) - exp(-Ak?)]
= k% - 6+ Alexp(AK® - 8)) - exp(-AK° - §))]
The implied exchange-rate bands are the maximum and
minimum of the resulting S(k) function.

~In the limit of infinitesimal intervention, the boundary
conditions are

S'(k") = S'(kp) = 0.
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In the symmetric case, these derivative conditions imply
1 + AXexp(AK?) - AXexp(-Ak®) = 0
or
A = -1/[Nexp(AK°) - Aexp(-Ak?)]

This negative coefficient indicates the stabilizing effect of the
target zone. We also can solve for x°.

We have looked at the case of a completely credible target
zone: policy interventions keep the exchange rate within the
zone with probability 1. If there is some chance that the
zone will be realigned or widened, different boundary
conditions determining A, and A, apply. For discussion, see
the items by Bertola, Krugman and Miller, and Svensson in
the "Further reading" section at the end of these notes.
Svensson contains a particularly nice review of empirical
work on target-zone models.
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Stochastic dynamic programming in continuous time:
application to portfolio selection

There are two investments, safe and risky. Output invested
in the safe activity grows in value according to:

dVE = rVEdt
Output invested in the risky activity grows according to:
dV* =aV¥dt + oVEdz (¢ > 1)

- All output is generated by these two types of capital.

Let ¢ be the share of wealth invested in the safe asset.
Then wealth follows the process:

dW = Wdt + (I-)aWdt + (1-H)oWdz - Cdt
Let J(W) be maximized lifetime expected utility, given W:

JIW(®)] = max E, | e*¢9u[C(s)]ds.
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The stochastic Bellman equation
The Bellman equation for the time interval [t, t-+h] is:
JIW®)] = max ¢, {u[C(t)]h + e™E J[W(t+h)]}

subject to the wealth-accumulation identity.

Subtract J[W(t)] from both sides and approximate the
discount factor by 1 - 6h. The result is

0 = max ¢ {u[C(®)]h + (1-8h)E, J[W(t+h)] - JIW ()]},

subject to the wealth constraint.

In the limit of continuous time we have

0 = max ¢ {u(C)dt + EdI(W) - §J(W)dt}
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By Itd’s Lemma, however:
dJ(W) = J'(W)dW + 1LJ"(W)(dW)?

dW?2 = ¢2(1 - 9> W2dt

Substitution and division by dt yields the continuous-tme
Bellman equation:

0 = max {uC) + YWt W + (1-HaW - C]

+ BI"(W)o2(1 - P W2 - I(W)} (*)

First-order conditions with respect to C and ¢ are:
u'(C)-T'(W) =0

(- DI'(W) + WI"(W)o2(1-9) =0
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Consumption and portfolio rules
Let u(C) = ¢! "®/(1 - R). Let’s make the (informed) guess
JW) = [m/(1-R)|W 1R
for some constant m. Then our first-order conditions imply:
c = m—l/Rw
| 1-¢=(a-1)/Ro?

To find m, notice that, upon substitution of the conjectured
value function, the consumption rule ¢ = m®W, and the
portfolio share above, eq. (*) =

= (1/R){6 - (1 - R)[r + (a - ?/2Ra?]}

As usual, R = 1 (log preferences) gives m = §.
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