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Abstract
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1 Introduction

How do individuals form expectations about future inflation? The answer to this question is

of central importance to policy-makers in the arena of monetary economics and to individual

households making financial and consumption decisions alike. Despite a large volume of

research on the determinants of expectation formation, there is still little convergence on

the best model to predict inflation expectations (see Mankiw, Reis, and Wolfers (2003);

Blanchflower and Kelly (2008)). Both the “stickiness” of inflation rate changes (Sims (1998),

Mankiw and Reis (2006)) and the heterogeneity in the formation of expectations remain hard

to reconcile with existing models.

In this paper, we propose that a key ingredient missing from existing theories is indi-

viduals’ personal experiences of past inflation. We argue that, when forming inflation ex-

pectations, individuals put a higher weight on realizations experienced over their life-times

than on other available historical data. Such experience-based learning is related to the

adaptive-learning approach in macroeconomics, but it differs in one key respect: data real-

ized during individuals’ life-times carries higher weight than other historical data. Averaged

across cohorts, the resulting expectations resemble those obtained from constant-gain learn-

ing algorithms commonly used in macroeconomics; but between cohorts, learning speed and

beliefs are heterogeneous. We use the heterogeneity in subjective expectations between indi-

viduals to estimate learning rules without having to rely on aggregate time-series information

about average expectations to fit the learning parameters.

The experience hypothesis carries a rich set of implications for the formation of infla-

tion expectations. First, beliefs are heterogeneous. Individuals who have lived through

high-inflation periods forecast higher future inflation than individuals who experienced low

inflation during their life-times so far. Second, young individuals place more weight on recent

inflation rates than older individuals since recent experiences make up a larger part of their

life-times so far. Third, learning dynamics are perpetual. Beliefs keep fluctuating and do

not converge in the long-run, as weights on historical data diminish when old generations
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disappear and new generations emerge.

We test the experience-based model using 54 years of microdata on inflation expectations

from the Reuters/Michigan Survey of Consumers (MSC). Our empirical framework employs

linear regression-based forecasting rules similar to those used in the adaptive learning litera-

ture, in particular Marcet and Sargent (1989), but with the twist that we allow individuals

to overweigh data realized during their life-times so far. Specifically, individuals use inflation

rates experienced in the past to recursively estimate an AR(1) model of future inflation. The

learning-from-experience mechanism is implemented by allowing the gain, i.e., the strength

of updating in response to surprise inflation, to depend on age. For example, young individ-

uals react more strongly to an inflation surprise than older individuals who have more data

accumulated in their life-time histories. A gain parameter determines how fast these gains

decrease with age as more data accumulates. We estimate this gain parameter empirically by

fitting the learning rule to individuals’ inflation expectations as reported in the MSC. The

empirical estimate reveals how people weight their inflation experiences when forming their

beliefs about future inflation.

The availability of microdata is crucial for our purpose as it allows us to identify the

experience effect from cross-sectional heterogeneity. Our identification strategy relies on

time-variation in cross-sectional differences of inflation experiences and relates it to time-

variation of cross-sectional differences in inflation expectations. Moreover, the time-variation

in cross-sectional differences allows us to employ time dummies in our estimations and thus

to separate the experience effect from time trends or other time-specific determinants of in-

flation expectations that affect all individuals. For example, our analysis does not assume

that past inflation experiences are the only influence on people’s subjective beliefs about

future inflation. Rather, with the inclusion of time dummies, we account for the possibility

that individuals draw on the full inflation history that is available at that point in time.

Our estimation isolates the incremental explanatory power of life-time experiences over and

above the explanatory power of the full time-series of historical inflation data. More gener-
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ally, the time dummies absorb any variation in inflation expectations that is common to all

individuals. For example, individuals might rely, to some extent, on the published forecasts

of professional forecasters, which could contain additional information over and above the

univariate history of inflation rates. The inclusion of time dummies rules out that any such

omitted macroeconomic variables bias the estimation results. This is an important difference

to other models of belief formation, such as adaptive learning models, where parameters are

fit to aggregate time-series of expectations (e.g., median expectations), making it difficult to

rule out that such unobserved effects that are common to all individuals bias the estimation

results.

Our estimation results show that learning from experience has an economically impor-

tant effect on inflation expectations. Individuals of different ages differ in their inflation

expectations, and these differences are well explained by differences in their inflation expe-

riences. The heterogeneity in expectations is particularly pronounced following periods of

high surprise inflation. For example, in the late 1970s and early 1980s, the average inflation

expectations of individuals under the age of 40 exceeded those of older individuals above age

60 by several percentage points, consistent with the fact that the experience of younger indi-

viduals was dominated by the high-inflation years of the 1970s, while the experience of older

individuals also included the low-inflation years in the 1950s and 1960s. This discrepancy

faded away only slowly by the 1990s after a many years of moderate inflation. Our model

explains this difference as the result of younger individuals perceiving inflation to be higher,

on average, and, to be more persistent when inflation rates were high until the early 1980s,

but to be less persistent when inflation rates had dropped subsequently.

Our estimates of the gain parameter imply that recent inflation experiences receive rela-

tively higher weight than experiences earlier in life, though experiences from 20 to 30 years

ago still have some long-run effects for older individuals.

We also explore the aggregate implications of learning from experience for the time series

of average inflation expectations. We show that if one averages experience-based expectations
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across cohorts at each point in time, the average learning-from-experience forecast matches

the average survey expectations closely. The similarity is remarkable because our estimation

did not utilize any information about the level of the average survey expectations, only in-

formation about cross-sectional differences between cohorts, Hence, learning from experience

helps to simultaneously predict both the cross-section and time-series of inflation expecta-

tions. We also show that the average learning-from-experience forecast can be approximated

very well with constant-gain learning algorithms that are popular in macroeconomics. The

constant-gain parameter that best matches our estimated learning-from-experience weights,

γ = 0.0175 turns out to be quantitatively very similar to the gain that Orphanides and

Williams (2005) and Milani (2007) have estimated by fitting the parameter to macroeconomic

data and aggregate survey expectations (0.0183 and 0.02 respectively). As with the survey

data, this similarity is remarkable because we did not calibrate learning-from-experience rule

to match the average level of inflation expectations or any macroeconomic data.

Learning, and learning in boundedly rational fashion in particular, implies that forecast

errors should be predictable, at least in sample, but possibly also out of sample. Consistent

with this implication, we find that the learning-from-experience forecasts contain information

that can be used to predict forecast errors in the level of average MSC inflation expectations

in sample as well as out of sample. Furthermore, the forecast error predictability arising from

our model is not limited to the non-professional forecasters in the MSC. We also show that the

same predictor variable helps predict forecast errors in the Survey of Professional Forecasters

and the excess returns on nominal long-term bonds (which could reflect the inflation forecast

errors of bond market investors).

Our paper connects to several strands of literature. There is a large literature in macroe-

conomics analyzes the formation of expectations. While it is well understood at least since

Keynes (1936) that macroeconomic outcomes and asset prices depend in crucial ways on

the expectations of economic actors, we know less about how economic agents form their

subjective beliefs about the future. The literature on adaptive learning (see Bray (1982);
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Sargent (1993); Evans and Honkapohja (2001)) views individual agents as econometricians

who make forecasts based on simple forecasting rules estimated on historical data. Yet, there

is little direct empirical evidence on the actual forecasting rules employed by individuals,

even though understanding the formation of inflation expectations, and macroeconomic ex-

pectations more generally, is likely to be of first-order importance for macroeconomic policy

(Bernanke (2007)).

Conceptually, our approach is related to bounded-memory learning in Honkapohja and

Mitra (2003) in that memory of past data is lost. However, while bounded-memory learn-

ing agents are homogeneous, the memories of agents in the experience-based model differs

depending on their age.

There is a small, but growing literature that looks at heterogeneity in expectations for-

mation with microdata. Building on early work by Cukierman and Wachtel (1979), Mankiw,

Reis, and Wolfers (2003) examine the time-variation in dispersion in inflation expectations,

and they relate it to models of “sticky” information. Carroll (2003) further investigates the

sticky information model, but with aggregate data on inflation expectations. Branch (2004),

Branch (2007), and Pfajfar and Santoro (2010) estimate from survey data how individuals

choose among competing forecasting models. Piazzesi and Schneider (2010) incorporate data

survey data on heterogeneous subjective inflation expectation in asset pricing, while Piazzesi

and Schneider (2011) use data on subjective interest rate expectations and a model with

adaptive learning. Shiller (1997) and Ehrmann and Tzamourani (2009) examine the rela-

tion between cross-country variation in inflation histories and the public’s attitudes towards

inflation-fighting policies. Our paper contributes to this literature by demonstrating that

learning from experience plays a significant role in expectations formation and produces both

heterogeneity in expectations and gradually fading memory over time.

Our analysis is related to earlier empirical findings of Malmendier and Nagel (2011), who

show that past stock-market and bond-market experiences predict future risk taking of in-

dividual investors. Their data, the Survey of Consumer Finances, however, did not allow
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them to determine whether these effects are driven by beliefs (e.g., experiences of high stock

returns make individuals more optimistic) or by endogenous preference formation (e.g., ex-

periences of high stock returns make individuals less risk averse or lead to other changes in

”tastes” for certain asset classes). The data used in this paper measures directly individual

expectations and thus allows to focus specifically on the beliefs channel. Interestingly, the

weighting of past experiences implied by the learning-from-experience rules estimated in this

paper matches very closely the weighting scheme estimated from a completely different data

source in Malmendier and Nagel (2011). Evidence consistent with learning-from-experience

effects is also presented in Greenwood and Nagel (2009) and Vissing-Jorgensen (2003), who

show that young mutual fund managers and young individual investors in the late 90s were

more optimistic about stocks, and in particular technology stocks, than older investors, con-

sistent with young investors being more strongly influenced by their recent good experience

with technology stocks. Vissing-Jorgensen also points out that there is age-heterogeneity of

inflation expectations in the late 1970s and early 1980s. Kaustia and Knüpfer (2008) and

Chiang, Hirshleifer, Qian, and Sherman (2011) find that investors’ participation decision and

bidding strategies in initial public offerings is influenced by extrapolation from previously

experienced IPO returns.

The rest of the paper is organized as follows. Section 2 introduces our experienced-based

learning framework and estimation approach. Section 3 discusses the data set on inflation

expectations. Section 4 presents our core set of results on learning-from-experience effects in

inflation expectations. In Section 5, we look at the implications of our results at the aggregate

level. Section 6 concludes with some final thoughts.

2 Learning from experience

Consider two individuals, one is member of the cohort born at time s, and the other belongs

to the cohort born at time s + j. At time t > s + j, how do they form expectations of

next period’s inflation, πt+1? The essence of the learning-from-experience hypothesis is that
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when these two individuals forecast πt+1, they place different weights on recent and distant

historical data, reflecting the different lengths of the inflation histories they have experienced

in their own lives so far. The younger individual, born at s+j, has experienced a shorter data

set, and is therefore more strongly influenced by recent data. As a result, the two individuals

may produce different forecasts at the same point in time.

Our analytical framework builds on the forecasting rules proposed in the adaptive learning

literature, in particular Marcet and Sargent (1989). (See also Sargent (1993) and Evans and

Honkapohja (2001).). The key departure from the standard adaptive-learning models is that

we allow individuals to put more weight on data experienced during their lifetimes than on

other historical data. Thus, the adaptive component of forecasting gives rise to cross-sectional

differences in expectations between different cohorts, depending on their life-time inflation

experiences.

We model the perceived law of motion that individuals are trying to estimate as an AR(1)

process, as, for example, in Orphanides and Williams (2004):

πt+1 = α+ φπt + ηt+1. (1)

Individuals estimate b ≡ (α, φ)′ recursively from past data following

bt = bt−1 + γtR
−1
t xt−1(πt − b′t−1xt−1) (2)

Rt = Rt−1 + γt(xt−1x
′
t−1 −Rt−1), (3)

where the recursion is started at some point in the distant past. (We will see below that, in

our specific setting, past data gets downweighted sufficiently fast that initial conditions do

not exert any relevant influence.)

The sequence of gains γt in the recursive algorithm determines the degree of updating

when faced with an inflation surprise. For example, with γt = 1/t, the algorithm represents a

recursive formulation of an ordinary least squares estimation that uses all data available until
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time t with equal weights (see Evans and Honkapohja (2001)). With γt set to a constant,

it represents a constant-gain learning algorithm, which weights past data with exponentially

decaying weights. Our key modification of the standard learning framework is that we let

the gain parameter depend on the age t − s of the members of the cohort s. As a result,

individuals of different age can be heterogeneous in their forecasts and they adjust their

forecasts to different degrees in response to surprise inflation. Given the perceived law of

motion in equation (1), these cross-sectional differences can arise from two sources: first,

from differences in individuals’ perception of the mean, µ = α(1 − φ)−1, and, second, from

differences in the perception of persistence, φ, of deviations of recent inflation from this

perceived mean.

Specifically, we consider the following decreasing-gain specification,

γt,s =


θ
t−s if t− s ≥ θ

1 if t− s < θ,

(4)

where θ > 0 is a constant parameter that determines the shape of the implied function of

weights on past experienced inflation observations. We let the recursion start with γt,s = 1

for t − s < θ, which implies that data before birth is ignored. (As explained below, our

econometric specification does allow for all available historical data to affect the forecast, but

isolates the effect of data realized during individuals’ life-times on expectation formation.)

This specification is the same as in Marcet and Sargent (1989) with one modification: the

gain here is decreasing in age, not in time, and individuals use only data realized during their

life-times.

Figure 1 illustrates the role of the parameter θ, Conceptually, we want to allow for the

possibility that experiences in the distant past have a different influence than more recent

experiences. For example, the memory of past episodes of high inflation might fade away

over time, as also implied by standard models such as constant-gain learning. Alternatively,

high-inflation experiences at young age, perhaps conveyed through the worries of parents,
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might leave a particularly strong impression and have a lasting impact on the formation of

beliefs about future inflation. The top graph of Figure 1 presents the sequences of gains γ

as a function of the age of the individual for different values of θ. Regardless of the value

of θ, gains decrease with age. This is a sensible assumption in the context of the learning-

from-experience hypothesis. Young individuals, who have experienced only a small set of

historical data, presumably have a higher gain than older individuals, who have experienced

a longer data history, and for whom a single inflation surprise observation should have a

weaker marginal impact on their estimates of the the inflation process parameters. The down-

weighting of past data is also consistent with the corresponding assumption in constant-gain

learning models. There, the motivations for assuming such down-weighting of past data

are, for example, that indviduals believe that a structural break may have occurred or that

they perceive the parameters of the inflation process to be time-varying. Our model adds

additional micro-foundation to that assumed pattern.

The top graph of Figure 1 also illustrates that the higher θ is, the slower is the rate at

which the gains decrease with age and, hence, the less weight is given to observations that are

more distant in the past. The latter implication is further illustrated in the bottom graph of

Figure 1, which shows the implied weights on past inflation observations as a function of the

time lag relative to current time t for the example of 50-year (200 quarters) old individual.

For θ = 1, all historical observations since birth are weighted equally. For θ > 1, instead,

weights on earlier observations are lower than those on more recent observations. With θ = 3

very little weight is put on observations in the first 50 quarters since birth towards the right

of the bottom graph.

In other words, our gain parametrization is quite flexible in accommodating different

weighing schemes. The weights can be monotonically increasing, decreasing, or flat. An ad-

ditional advantage of the decreasing-gain specification in equation (4) is that, for appropriate

choices of the weighting parameters. it produces weight sequences that are virtually identical

to those in Malmendier and Nagel (2011). (See Appendix D.) This allows us to compare the
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experience-based weights implied by our estimates of θ from inflation expectations data, with

the earlier evidence in Malmendier and Nagel (2011) where the weighting scheme is estimated

from data on portfolio allocations.

In addition to the influence of past inflation experiences, we allow other information

sources to affect the formation of inflation expectations. Let πht = h−1
∑h−1

h=0 πt−i denote

the h-period average inflation rate (with both πt and πht measured at annual rates). Let

πht+h|t,s denote the forecast of the average (annualized) inflation rate over the next h periods

made by cohort s at time t, where subscript |t, s denotes that a forecast was made using

information available to agents of cohort s at time t and where the superscript h denotes the

forecast horizon. Individuals’ one-step ahead adaptive learning forecast of the experience-

based component of inflation is obtained as τ1
t+1|t = b′txt, and multi-period forecasts of the

epxerience based-component τht+h|t are obtained by iterating on the forecasting model at the

time-t estimates of the model parameters. We capture the influence of information sources

other than experienced inflation by assuming

πht+h|t,s = βτht+h|t,s + (1− β) fht . (5)

That is, the subjective expectation is a weighted average of the learning-from-experience

component τht+h|t,s and an unobserved common component fht of individuals’ h-period fore-

casts. This unobserved component fht could represent any kind of forecast based on common

information available to all individuals at time t, such as the opinion of professional fore-

casters or the representation of their opinions in the news media (e.g., as in Carroll (2003)).

Alternatively, fht could capture a common component of individual forecasts that is driven

by all available historical data. In either case, the coefficient β captures the incremental con-

tribution of life-time experiences τht+h|t,s to πht+h|t,s over and above thes common components.

Thus, we do not assume that individuals only use data realized during their life-times, but

isolate empirically the incremental effect of life-time experiences on expectations formation.
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Empirically, we estimate the following modification of equation (5):

π̃ht+h|t,s = βτht+h|t,s + δh′Dt + εht,s, (6)

where π̃ht+h|t,s denotes measured inflation expectations from survey data. In this estimating

equation, we absorb the unobserved fht with a vector of time dummies Dt. We also add the

disturbance εht,s, which we assume to be uncorrelated with τht+h|t,s, but which is allowed to

be correlated over time within cohorts and between cohorts within the same time period.

It captures, for example, measurement error in the survey data and idiosyncratic factors

influencing expectations beyond those explicitly considered here. We use this specification

to jointly estimate θ and β with non-linear least squares. (Recall that τht+h|t,s is a non-linear

function of θ.)

The presence of time dummies in Eq. (6) implies that we identify β and θ, and hence the

learning-from-experience effect on expectations, from cross-sectional differences between the

subjective inflation expectations of individuals of different ages, and from the evolution of

those cross-sectional differences over time. The cross-sectional identification allows to rule out

confounds affecting prior work, which has estimated adaptive learning rules from aggregate

data, e.g., time-series of mean or median inflation expectations. Under the prior approach,

it is hard to establish whether the time-series relationship between inflation expectations

and lagged inflation rates truly reflects adaptive learning rules, or whether the expectations

implied by adaptive learning just happen to be highly correlated with the expectations implied

by some other formation mechanism (e.g., rational expectations). In contrast, the model of

experience-based learning makes a clear prediction about the cross-section: Expectations

should be heterogeneous by age, and for young people they should be more closely related

to recent data than for older people. Moreover, we can estimate the gain parameter θ that

determines the learning speed from this cross-sectional heterogeneity. This provides a new

source of identification for the learning speed in adaptive learning algorithms.

Finally, it is worth emphasizing that, despite the formal similarities in learning algorithms
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between adapative and experience-based models (other than the dependence on age), the un-

derlying interpretation is different. In the adaptive learning literature, the use of relatively

simple learning algorithms is motivated by the fact that economic agents face cognitive and

computational constraints which limit their ability to use optimal forecasts. The algorithms

are viewed as an approximation of the “rules of thumb” that practitioners and individuals

might employ to form their expectations. The focus of much of the adaptive learning liter-

ature is on the conditions under which such simple learning rules can lead to convergence

to rational expectations. Our objective, instead, is to use the simple recursive least-squares

learning framework as a starting point for an empirical investigation of individuals’ actual

forecasting rules. Correspondingly, we depart from the standard adaptive learning algorithms

and introduce age-dependece in order to allow for learning-from-experience effects.

3 Data

To estimate the learning-from-experience model, we use long-term historical data on the

consumer price index (CPI). Our survey data starts in 1953. In order to fully capture expe-

rienced inflation, even for the oldest individuals in the survey sample, we need inflation data

stretching back 75 years before that date. We use CPI data from Shiller (2005), available on

Robert Shiller’s website from 1871 until the end of 2009. to calculate annualized quarterly log

inflation rates. To illustrate the long-run variation in inflation rates, Figure 2 shows annual

inflation rates from this series.

The inflation expectations microdata is from the Reuters/Michigan Survey of Consumers

(MSC), conducted by the Survey Research Center at the University of Michigan. These

surveys were administered since 1953, initially three times per year, then quarterly from

1960 through 1977, and monthly since 1978 (see Curtin (1982)). We obtain data for surveys

conducted from 1953 to 1977 from the Inter-university Consortium for Political and Social

Research (ICPSR) at the University of Michigan. From 1959 to 1971, the questions of the

winter-quarter Survey of Consumer Attitudes were administered as part of the Survey of
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Figure 2: Annual CPI inflation rates

Consumer Finances (SCF ), and so we obtain those data from the SCF files at ICPSR.

The data from 1978 to 2007 is available in from the University of Michigan Survey Research

Center.

In most periods, survey respondents are asked two questions about expected inflation,

one about the expected direction of future price changes (“up”, “same”, or “down”) and one

about the expected percentage of price changes. In many periods, consumers are asked these

two questions both for a one-year horizon and for a five-to-ten year horizon. Our analysis

aims to make quantitative predictions and thus focuses on percentage expectations about

future inflation, typically for the one-year horizon. Figure 3 highlights the periods in which

we have percentage expectations data for the one-year horizon. Those quarters are shaded

in light grey. Quarters in which the survey asked only the categorical questions about the

expected direction are shaded in dark grey. In those quarters we impute percentage responses

from the categorical responses. The imputation procedure is described in detail in Appendix

B.
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(age < 40) and old (age > 60) in excess of the full-sample cross-sectional mean expectation.
Percentage forecasts are available in light shaded periods, they are imputed from categorical
responses in dark shaded periods, and unavailable in unshaded periods.

Since our learning-from-experience hypothesis predicts that inflation expectations should

be heterogeneous across different age groups, we aggregate the data at the cohort level, i.e.,

by birth year. For each survey month and each cohort, we compute the mean inflation

expectations of all members of the cohort. In the computation of this mean, we apply the

sample weights provided by the MSC. If multiple monthly surveys are administered within

the same quarter, we average the monthly means within each quarter to make the survey

data compatible with our quarterly inflation rate series.

We restrict our sample to respondents whose age ranges from 25 to 74. This means that

for each cohort we obtain a quarterly series of inflation expectations that covers the time

during which members of this cohort are from 25 to 74 years old.

To provide some sense of the variation in the data, Figure 3 plots the average inflation

expectations of young individuals (averaging across all cohorts that are in the age range from

15



25 to 39) and old individuals (averaging across cohorts that are in the age range 61 to 75),

relative to the full-sample cross-sectional mean expectation at each point in time. To bet-

ter illustrate lower frequency variation, we plot the data as four-quarter moving averages.

The dispersion across age groups widens to almost 3 percentage points (pp) during the high

inflation years of the 1970s and early 1980s. The fact that young individuals at the time

expected higher inflation is consistent with the learning-from-experience story: The expe-

rience of young individuals around 1980 was dominated by the recent high-inflation years,

while older individuals’ experience also included the modest inflation rates of earlier decades.

For younger individuals, with a smaller set of experienced inflation data points, these recent

observations exert a stronger influence on their expectations. As we show below, differences

in the perception of inflation persistence between young and old matter as well, not just

differences in the level of inflation rates they experienced in the past.

4 Estimation of learning-from-experience effects from expec-

tations heterogeneity

We now estimate the learning-from-experience effects by fitting the estimating equation (6)

and the underlying AR(1) model to the MSC inflation expectations data, using nonlinear

least squares on the data aggregated at the cohort level. We relate survey expectations

measured in quarter t to learning-from-experience forecasts τht+h|t,s, where we assume that

the data available to individuals in constructing τht+h|t,s are quarterly inflation rates until the

end of quarter t−1. To account for possible serial correlation of residuals within cohorts and

correlation between cohorts within the same time period, we report standard errors that are

robust to two-way clustering by cohort and calendar quarter.

Table 1 the estimation results. Using the full sample, our estimate of the gain parameter

in column (1) is θ = 3.006 (s.e. 0.249). Comparing this estimate of θ with the illustration

in Figure 1 one can see that the estimate implies weights that are declining a bit faster than
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Table 1: Explaining heterogeneity inflation expectations with learning from experience

Each cohort is assumed to recursively estimate an AR(1) model of inflation, with gain decreasing with
age, using quarterly annualized inflation rate data up to the end of quarter t−1. The table reports the
results of non-linear least-squares regressions of one-year inflation expectations in quarter t on these
learning-from-experience forecasts. Standard errors reported in parentheses are two-way clustered by
time and cohort. The sample period runs from 1953 to 2009 (with gaps).

Baseline Restricted
(1) (2) (3) (4) (5)

Gain parameter θ 3.006 3.097 3.991 4.192 3.006
(0.249) (0.272) (0.609) (0.445) -

Sensitivity β 0.647 0.650 0.670 1.000 1.000
(0.074) (0.077) (0.083) - -

Time dummies Yes Yes No No No
Imputed data included Yes No No No No

Restrictions ft = SPFt−1 β = 1 β = 1
θ = 3.006

Adj. R2 0.636 0.634 - - -
RMSE 0.0148 0.0152 0.0189 0.0192 0.0195
#Obs. 8165 7600 7400 7600 7600

linearly. The estimation results in column (1) also show that there is a strong relationship

between the learning-from-experience forecast τht+h|t,s and measured inflation expectations,

captured by the sensitivity parameter β, which we estimate to be 0.647 (s.e. 0.074). This

magnitude of the β parameter implies that when two individuals differ in the weighted-average

inflation experienced during their life time by 1 pp, their one-year inflation expectations differ

by 0.647 pp on average.

The presence of the time dummies in these regressions is important to rule out that the

estimates pick up effects unrelated to learning from experience. If individual expectations

were unaffected by inflation experiences – for example, because all individuals learned from

the same historical data set in the same way, applying the same forecasting rules — then

all the effect of historical inflation rates, including “experienced” inflation rates, on current

17



forecasts would be picked up by the time dummies and β would be zero. The fact that β

is not equal to zero is direct evidence that differences in experienced inflation histories are

correlated with differences in expectations. The positive β-estimate also implies that recent

observations exert a stronger influence on expectations of the young, because their set of

experienced historical inflation rates comprises only relatively few observations.

To check whether the imputation of percentage responses from categorical responses has

any influence on the results, we re-run the estimation without the imputed data, using only

those time periods in which percentage responses are directly available. The results are

presented in column (2). As can be seen, whether or not imputed data is used has little effect

on the results. We estimate a similar gain parameter, θ = 3.097 (s.e. 0.272), and a similar

sensitivity paramenter β = 0.647 (s.e. 0.074).

Interestingly, the weighting of past inflation experiences implied by the point estimates

of θ is similar to the weighting implied by the estimates obtained in Malmendier and Nagel

(2011) by relating data on household asset allocation to experienced risky asset returns.1

This is quite remarkable since the data on inflation expectations is drawn from a completely

different data set, and since we look at beliefs about inflation rather than asset allocation

choices. Despite those differences, the dependence on life-time macroeconomic history in

both cases seems to imply a similar weighting of experienced data, suggesting that a common

expectations-formation mechanism may be driving all of these results.

One possible alternative theory for these (time-varying) age-related differences in inflation

expectations is that different age groups consume different consumption baskets, and that

individuals form inflation expectations based on the (recent) inflation rates they observe on

their age-specific consumption baskets. The concern would be that these inflation differentials

between age-specific consumption baskets could be correlated with differences in age-specific

learning-from-experience forecasts that we construct. In other words, inflation differentials
1The weighting function in Malmendier and Nagel (2011) is controlled by a parameter λ which relates to

θ as θ ≈ λ+ 1 (see Appendix D), and which is estimated to be in the range from 1.1 to 1.9 depending on the
specification.
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between age-specific consumption baskets could be a correlated omitted variable. To address

this issue, we re-run the regressions in Table 1 controlling for differences between inflation

rates on consumption baskets of the elderly and overall CPI inflation rates. We measure

the inflation rates of the elderly with the experimental CPI for the elderly series (CPI-E)

provided by the Bureau of Labor Statistics. The results reported in Appendix C show that

this does not affect our results. The cross-sectional differences that we attribute to learning-

from-experience effects are not explained by differences in age-specific inflation rates.

Columns (3) to (5) in Table 1 consider restricted versions of the estimating equation (5).

The specification in (5) with time dummies is useful to cleanly demonstrate the existence

of the learning-from-experience effect with a test of the null hypothesis β = 0. It also al-

lows estimation of θ purely from cross-sectional differences, removing potentially confounding

unobserved factors that also affect expectations. On the other hand, it would be useful to

know to what extent variation in the levels of expectations rather than just cross-sectional

differences can be explained with the learning-from-experience forecasts.

The specification in column (3) explores which factors may be captured by the time

dummies in (5). A likely possibility is that individuals put some weight on the opinions of

professional forecasters when these forecasts get disseminated in the media. To check this,

we remove the time dummies and intercept and use the Survey of Professional Forecasters

(SPF) forecast of quarter t − 1 as the common factor ft in (6). We further restrict the

coefficient on the SPF to be 1 − β so that individuals’ expectation is a weighted average of

the learning-from-experience forecast and the SPF forecast. Without the time dummies, the

estimation now uses information about levels in inflation expectations, not just cross-sectional

differences, and so we remove the imputed data, because our imputation is only designed to

impute cross-sectional differences, but not levels. The number of observations in column (3)

is further slightly lower than in column (2) because SPF forecasts are not available in a few

quarters early in the sample. As column (3) shows, replacing the time dummies with the

SPF has little effect on the estimate of β compared with columns (1) and (2). With 3.991
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(s.e. 0.272), the estimate of θ is higher, though. The shape of the weights on past inflation

data implied by this point estimate is still quite similar to the shape implied by the estimates

in columns (1) and (2). Since this regression is run without intercept, the adj. R2 is not a

useful measure of fit, but the RMSE shows that replacing time dummies with the SPF leads

to a rather moderate decrease in explanatory power. Thus, the SPF seems to capture much

of the factors absorbed by the time dummies in columns (1) and (2).

The specification in column (4) completely removes the unobserved factor ft in (6) by

restricting β = 1. Thus, it checks to what extent cross-sectional differences as well as average

levels of inflation expectations can be explained with the learning-from-experience forecast

alone. This is the most parsimonious specification, as it leaves only the parameter θ to be

estimated. Remarkably, with 4.192 (s.e. 0.445) the estimate of θ is very close to the estimate

in column (3). Judging by the RMSE, the fit is almost as good, too.

Column (5) explores the explanatory power of the learning-from-experience forecasts when

θ is set to the point estimate from column (1), which one could regard as the cleanest estimate,

as the time dummies in column (1) removed potentially confounding unobserved factors. We

also restrict β = 1, so this column simply reports the fit at these parameters, without any

further estimation. The RMSE is only slightly higher than in column (4). This underscores

that the higher θ in column (4) does not lead to big differences in the resulting learning-from-

experience forecasts.

To get a better sense of the extent to which learning-from-experience effects explain cross-

sectional differences in inflation expectations, Figure 4 presents some plots of fitted values for

different age groups. Panel (a) is based on the baseline estimates from column (1) in Table

1, Panel (b) reports the fitted values from the restricted model in column (4).

For the purpose of these plots, we average inflation expectations and the fitted values

within the same young (age < 40) and old (age > 60) categories that we used earlier in Figure

3. Since our baseline estimation with time dummies focuses on cross-sectional differences, we

plot the inflation expectations and fitted values of these subgroups after subtracting the full-
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Figure 4: AR(1) model: Comparison of 4-quarter moving averages of actual and fitted 1-year
inflation expectations for young and old in excess of the full-sample cross-sectional mean
expectation. Panel (a) corresponds to column (1) and Panel (b) corresponds to column (4)
in Table 1.
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sample mean each period. Thus, the plots focus on cross-sectional differences. To eliminate

high-frequency variation, we show 4-quarter moving averages for both actual and fitted values.

Fitted values are drawn as lines, raw inflation expectations are shown as triangles (young) or

circles (old).

The plot shows that the experience-based model does a good job of explaining the dif-

ferences in inflation expectations between young and old. In particular, it accounts, to a

large extent, for the large difference in expectations between young and old in the late 1970s

and early 1980s. These plots also highlight that the unrestricted baseline model in Panel

(a) and the restricted model in Panel (b) do roughly equally well overall in explaining age-

heterogeneity in inflation expectations, but some features of the data are fit better by the

baseline model, while some are better fit by the restricted model. For example, the mean

reversion in the old-young gap in the early 1980s is too fast in the baseline model. The

restricted model does better on this dimension. The restricted model, however, produces a

spike in the old-young gap after the first inflation shock of the 1970s that is much bigger than

the gap found in the data. The baseline model does better on this dimension.

Figure 5 reports the persistence and conditional mean inflation perceived by young and

old over the course of the sample, as implied by the estimate of θ from Table 1, column (1).

The figure shows that there has been first in increase and then a dramatic decline in the

perceived persistence and the perceived mean inflation rates. Young individuals’ views about

mean and persistence are much more volatile than older individuals’ views, as they are more

strongly influenced by recent data. For example, our estimates imply that at the end of the

sample period, young individuals’ inflation expectations are well anchored at low expected

inflation rates, as the perceived persistence is close to zero. Older individuals perceived

inflation persistence, however, is still substantially above zero.
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Figure 5: Learning-from-experience AR(1) model estimates (with θ = 3.006) of autocorrela-
tion (top) and mean inflation (bottom) for young and old.
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5 Implications for inflation expectations in the aggregate

So far we have focused on understanding to what extent experienced inflation can help un-

derstand the formation of inflation expectations at the cohort level. From a macroeconomic

perspective it would also be interesting to see to what extent the learning-from-experience

mechanism, based on the estimates of θ from cross-sectional heterogeneity, helps explain infla-

tion expectations in the aggregate. In this section we show that the learning-from-experience

forecasts at the cohort level aggregate to average forecasts that closely resemble those from

constant-gain algorithms that are popular in macroeconomics. We also show that one can

extract components from the experience-based forecasts that are useful in predicting forecast

errors in the Michigan survey (MSC) and the Survey of Professional Forecasters (SPF), as

well as the returns on long-term bonds.

5.1 Approximating learning-from-experience with constant-gain learning

In our learning-from-experience framework, individuals update their expectations with de-

creasing gain: as individuals age, their experienced set of data expands and their expectations

react less to a given inflation surprise than those of younger individuals. However, older indi-

viduals leave the population at some point and are replaced by younger ones. Hence, at any

given point in time, there is a time-specific distribution of gains in the population, but to the

extent that the age distribution is relatively stable, the average gain should be approximately

constant. Therefore, the average forecast across all age groups can be approximated by a

constant-gain learning algorithm where updating takes place in the same way as laid out in

equations (1) to (3), but with the decreasing gain in (4) replaced by a constant gain, and

with a single “representative” agent.

How well this works can be seen by comparing the average weights on past inflation

data implied by the cohort-level learning-from-experience rules with the weights implied by

constant-gain learning. The solid line in Figure 6 plots the average of implied weights on past

inflation with learning from experience, where the average is taken (equal-weighted) across
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all cohorts alive in the population at a point in time. The implied weights are based on our

point estimate of θ = 3.006 from Table 1, column (1). We then look for a constant gain so

that the weights on past data implied by this constant-gain algorithm minimize the squared

deviations from the average learning-from-experience weights. The result is a constant gain

of γ = 0.0175, with implied weights as shown by the dashed line. The figure shows that the

weighting of past data is very similar. Thus, the implications of learning from experience for

expectations formation in aggregate are likely to be very similar to those of the constant-gain

learning algorithms that are common in macroeconomics (see, e.g., Orphanides and Williams

(2005), Milani (2007), Evans and Honkapohja (2001)).2

There are two important differences, though. First, the motivation for the loss of memory

of past data is different. In constant-gain learning, the gradual loss of influence of past data is

typically motivated as a concern on part of agents that past data is not relevant anymore due

to structural changes and time-variation in the parameters of the perceived law of motion.

While these concerns may also be relevant in the learning-from-experience framework and

lead to θ > 1 so that recent data receives a higher weight than data realized earlier in life,

learning from experience comes with the additional feature that memory of past data is lost

as old generations die and new ones are born. In aggregate, data in the distant past would

be downweighted even if each individual weighted all life-time experiences equally.

Second, as we demonstrated in the previous section, the gain parameter of the learning-

from-experience rule can be estimated from cross-sectional data. Our estimate of θ is not

fitted to aggregate expectations. The time dummies in our estimation absorb all variation in

the cross-sectional average expectation, and so θ is identified from cross-sectional information

only. In light of the fact that we did not employ aggregate expectations in estimation of θ

and we did not calibrate θ to achieve the best fit to realized future inflation, it is remarkable

that the constant gain γ = 0.0175 in Figure 6 that best matches the weights implied by our

estimate of θ is virtually the same as the gains that seem to be required to match aggregate
2Cross-sectional heterogeneity in expectations between different cohorts could matter for other macroeco-

nomic implications, though; see, e.g., Piazzesi and Schneider (2010).
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Figure 6: Implied aggregate weights for past inflation observations under learning from ex-
perience (equal-weighted average of weights across age groups at point estimate of θ = 3.006
from Table 1, Panel A, column (1)) compared with implied weights under constant-gain
learning by a single agent (with gain γ = 0.0175 that minimizes squared deviations from the
aggregated learning-from-experience weights).

expectations and macro time-series data. For example, Milani (2007) estimates a DSGE

model with constant-gain learning and obtains an estimate of 0.0183 that results in the best

fit of the model to the macro time series employed in estimation. Orphanides and Williams

(2005) choose a gain of 0.02 to match the time series of inflation forecasts from the Survey

of Professional Forecasters (SPF). Thus, our estimation from cross-sectional heterogeneity

between different cohorts brings in new additional data that provides “out-of-sample” support

for values of the gain parameter in this range. This is particularly important because the

identification of the learning speed in macro models from macro data is econometrically

difficult (Chevillon, Massmann, and Mavroeidis (2010)).
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5.2 Explaining the level of average inflation expectations

Figure 7 explores how well the average learning-from-experience forecast tracks the average

1-year survey expectations (i.e., the data we used in the estimation in Table 1 is now averaged

across all cohorts each quarter). Since our imputation of percentage responses only targeted

cross-sectional differences, but not the average level of percentage expectations, we omit all

periods from these regressions in which we only have categorical inflation expectations data.

It is apparent that the average learning-from-experience forecast (calculated with θ =

3.006 from Table 1, Panel A, column (1)), shown as the solid line, tracks the average survey

expectations closely. It is important to keep in mind that this is by no means a mechanical re-

sult. Our estimation of θ used only cross-sectional differences in survey expectations between

cohorts. It did not utilize any information about the level of the average survey expectation.

Therefore, it could have been possible, in principle, that the θ that fits cross-sectional differ-

ences produces average forecasts that fail to match the level of average expectations. As the

figure shows, though, we find that the two match well.

We also compare the average learning-from-experience forecast to a constant-gain-learning

forecast (with γ = 0.0175 as in Figure 6), shown as the dashed line. Not surprisingly,

given how similar the weights on past inflation data are for the two expectations-formation

mechanisms (see Figure 6), the forecasts are almost indistinguishable. This provides further

support for the idea that at the aggregate level, the learning-from-experience expectations

formation mechanism can be approximated well with constant-gain learning.

Next, we compare the average learning-from-experience forecast to a sticky-information

forecast. Sticky information, as in Mankiw and Reis (2002) and Carroll (2003) induces sticki-

ness in expectations, and it is possible that our estimation of the learning-from-experience rule

might be picking up some of this stickiness in expectations. We calculate sticky-information

inflation expectations as in Carroll’s model as a geometric distributed lag of current and past

quarterly SPF forecasts of one-year inflation rates.3 We set the weight parameter λ = 0.25
3We use the 1-year inflation forecasts that the SPF constructs from median CPI inflation forecasts for each
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Figure 7: Average 1-year survey expectations (actual) compared with average learning-from-
experience forecasts and with constant-gain and sticky-information forecasts.

as in Mankiw and Reis (2002) (Carroll (2003) estimates λ = 0.27). The resulting sticky-

information forecast is shown as the short-dashed line in Figure 7.

In addition to the informal graphical comparison in Figure 7, Table 2 reports the results

from a regression of quarter t average survey expectations on the learning-from-experience

forecast in quarter t. Column (1) shows that with 0.893 the coefficient on the learning-from-

experience forecast is very close to one, and less than one standard error away from it. With

57.0% the adj. R2 is high. This is another confirmation of the fact that the learning-from-

experience forecast tracks the actual average survey expectations very closely. Not surpris-

ingly, given the similarity of average learning-from-experience forecasts and constant-gain

learning forecasts, using the constant-gain learning forecast as explanatory variable in col-

umn (2) produces almost identical results. The explanatory power of the sticky-information

of the four quarters ahead. Before 1981Q3, when the CPI inflation forecast series is not available, we use the
GDP deflator inflation forecast series.
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Table 2: Explaining mean inflation expectations

OLS regressions with quarterly data from 1973Q1 to 2009Q4 (with gaps). The dependent variable
is the forecast of one-year inflation made during quarter t, averaged across all cohorts. Newey-West
standard errors (with 5 lags) are shown in parentheses.

(1) (2) (3) (4)

Learning-from-experience forecast 0.893 0.707
(0.124) (0.130)

Constant-gain-learning forecast 0.943
(0.144)

Sticky-information forecast 0.877 0.385
(0.202) (0.145)

Intercept 0.009 0.008 0.011 -0.001
(0.005) (0.005) (0.006) (0.005)

Adj. R2 0.570 0.557 0.597 0.713
#Obs. 172 172 129 129

forecast in column (3) is lower. Adding the sticky-information forecast as an explanatory

variable along with the learning-from-experience forecast in column (4) lowers the coefficient

on the learning-from-experience forecast a little, but the effect is small. This shows that

the learning-from-experience forecast does not just pick up the sticky-information effect of

Mankiw and Reis (2002) and Carroll (2003).

5.3 Predictability of forecast errors

Adaptive learning may lead to predictable and persistent forecast errors (from the econo-

metrician’s perspective). If such forecast errors do not cancel out in the aggregate, they

can influence macroeconomic outcomes. We therefore now turn our attention to the question

whether we can link the learning-from-experience behavior to predictability of level of average

forecast errors.

That learning-from-experience can lead to predictable and persistent forecast errors can

be seen in the following simplified example. Consider first the simple mean model with a
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time-varying mean, πt+1 = µt + ηt+1, as the true as well as the perceived model of inflation.

The average one-step ahead learning-from-experience forecast results in the forecast error

π1
t+1|t − πt+1 = µ|t − µt − ηt+1. (7)

Now consider an econometrician who analyzes subjective expectations data ex-post with

data available. If µt is equal to a constant µ, the econometrician can, with a sufficiently large

sample (which is not restricted to the [s, t] interval that learning-from-experience agents in

cohort s are learning from), approximately observe the true mean. Any fluctuations of µ|t

around µ translate, predictably and one-to-one, into forecast errors. Regressing π1
t+1|t− πt+1

on µ|t would yield a coefficient of one, with the second term in (7) absorbed by the intercept. If

µt is time-varying, µ|t is likely to have positive correlation with µt which lowers the regression

coefficient. Of course, it is also possible that agents have some biases in their forecasts that

influence the coefficient upwards.

In the case of a true and perceived AR(1) model for inflation with time-varying parame-

ters, πt+1 = µt + φt(πt − µt) + ηt+1, the situation is more complicated. The one-step ahead

forecast error in the average learning-from-experience forecast is given by

π1
t+1|t − πt+1 = µ|t(1− φ|t)− µt(1− φt) + φ|tπt − φtπt. (8)

If µt and φt are constant, regression of π1
t+1|t − πt+1 on µ|t(1− φ|t), φ|tπt, and πt produces a

coefficient of one on the first two variables, and a coefficient of φ on the third. The second

term in (8) is absorbed by the intercept. If µt and φt are time-varying, this can result in

lower coefficients on the first two variables, just like in the simple mean model above, but, in

addition, regression coefficients here can also be impacted by correlation between the various

terms in (8).

We now run these regressions in our data. We work with 1-year ahead forecasts (h = 4

quarters). The multi-period expression corresponding to the right-hand side of equation (8)
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Table 3: Predictability of average forecast errors

OLS regressions with quarterly data from 1973Q1 to 2009Q4 (with gaps). The dependent variable is
the forecast of 1-year inflation made during quarter t, averaged across all cohorts, minus the inflation
rate realized over the 12 months following the interview month. Newey-West standard errors (with
5 lags) are shown in parentheses. Out-of-sample (OOS) forecasts for the OOS tests at the bottom
of each panel are constructed recursively, with an initial minimum window size until 1976Q3 (20
observations), except for column (3), where the initial window extends until 1989Q4.

Full sample Post-1989 SPF
(1) (2) (3) (4)

Mean component 2.553 2.432 1.526 3.203
(0.750) (0.735) (0.864) (1.004)

AR component -0.380 -0.839 -0.049
(0.318) (0.648) (0.337)

Lagged inflation 0.090 0.199 -0.062
(0.112) (0.098) (0.112)

Intercept -0.073 -0.068 -0.036 -0.096
(0.023) (0.023) (0.024) (0.031)

Adj. R2 0.222 0.243 0.158 0.288
#Obs. 152 152 80 148

OOS RMSE with constant only 0.019 0.019 0.018 0.020
OOS RMSE with constant and predictor(s) 0.017 0.017 0.016 0.017
Diebold-Mariano one-tailed p-value 0.019 0.011 0.044 0.052

can be obtained by iterating on the AR(1) model. The three predictors in this multi-period

case are µ|t

(
1−

∑4
i=1 i

−1φi|t

)
, which we label as the mean component,

(∑4
i=1 i

−1φi|t

)
πt,

which we label as the AR component, and πt. The µ|t and φ|t parameter estimates are

averages of the parameter estimates across all cohorts at time t, where we computed the

cohort-level estimates from the learning-from-experience rule with θ = 3.006 as in Table 1.

In the computation of the average survey expectation on the left-hand side (from which we

subtract the realized four-quarter inflation rate π4
t+4), we take care to first align individuals’

reported expectations with realized inflation rates by interview month, i.e., we align it with

the inflation rates realized over the 12 months following the interview month.

Table 3 presents the results. As column (1) shows, there is a strong positive relationship
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between the mean component of the learning-from-experience forecast at time t and average

inflation forecast errors of the participants in the Michigan survey during the forecast period

t to t + 4. The coefficient estimate of 2.553 (s.e. 0.750) is greater than one, which suggests

that the regression picks up not only forecast errors induced by learning, but also other

errors over and above the error induced by learning. The point estimate is just about two

standard errors above one, though, so a coefficient of one is still within the likely range of

possible values that one might find if one had a larger sample. The adj. R2 of 22.2% indicates

that predictability of forecast errors is substantial. Column (2) adds the AR component and

the lagged inflation rate πt−1 as predictors,4 but both of these are not significant, neither

statistically nor in terms of their incremental explanatory power. To check whether all the

predictability is driven by the high-inflation periods around 1980, the regression reported in

column (3) is run with the sample restricted to the post-1989 period. The coefficient on the

mean component is lower, but the adj. R2 of 15.8% still indicates substantial predictability.

Evidently, the forecast error predictability is not just limited to the high-inflation periods.

Another interesting issue is to what extent inflation expectations of professional fore-

casters mirror the predictability that we find in individuals’ forecast errors in the MSC.

Individuals’ forecast errors may be more significant for individuals’ decisions (e.g., house-

hold investment decisions, labor market choices), while professional forecasts may be more

relevant for asset pricing in financial markets. For this reason, column (4) reports results

from a regression where we use the forecast error from the SPF as dependent variable. The

results are similar to those with the MSC data in column (2): A large coefficient on the

mean component, close-to-zero coefficients on the AR component and lagged inflation, and

an adj. R2 greater than 20%. Thus, the forecasts of professionals exhibit similar forecast

error predictability.

Our focus so far has been on tests of in-sample predictability. To check for predictabil-

ity induced by learning along the lines discussed above, this is the appropriate perspective.
4As before, we assume here that forecasts in quarter t are made with information up to end of quarter

t− 1, and so µ|t, φ|t, and the lagged inflation rate are also calculated from inflation rates up to quarter t− 1.

32



Learning does not necessarily induce predictability of forecast errors out-of-sample (OOS),

though (although it might, to the extent that rationality is bounded and individuals dis-

card information, as in learning from experience, or use information in suboptimal ways, or

work with misspecified models). In addition to shedding light on individuals’ expectations

formation mechanism, exploring OOS predictability would also have the potential practical

implication that it could help to extract better inflation forecasts from the Michigan survey

data by removing some predictable errors in real time.

To provide some perspective on the OOS predictability of forecast errors in the Michigan

survey, the bottom rows of Table 3 report (pseudo) OOS test results. The prediction for

the forecast error in period t to t + 4 is constructed from estimates of a regression using

data from the start of the sample up to quarter t. We use an initial window until 1976Q3

(20 observations) for the first prediction, with the exception of column (3), where the initial

window extends until 1989Q4. We report the root mean squared error (RMSE) from this

OOS prediction exercise for two specifications: one regression with only a constant, and one

with the predictors included. In column (1), including the mean component of the learning-

from-experience forecast in addition to the constant lowers the OOS RMSE to 0.017 from

0.019. To check the significance of this difference, we calculate the Diebold and Mariano

(1995) statistic (with Newey-West adjustment). We obtain a p-value of 0.019, indicating

evidence for OOS predictability. Adding additional predictors in column (2) has little effect.

Out-of-sample predictability is also evident in the late sample in column (3) and the SPF in

column (4).

5.4 Predictability of bond excess returns

As an alternative way of assessing whether the predictability of forecast errors is pervasive

among macroeconomic forecasters and financial market participants and not just confined to

the individuals in the MSC sample, we now examine excess returns on nominal long-term

bonds. The tests with bond market returns have the additional benefit that we can use data
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that extends further back in time, because we only need inflation and return data, but not

survey data for these tests.

For default-free bonds, an identity connects realized (log) returns in excess of the one-

period risk-free rate from holding an n period bond from t to t + 1 as follows (see, e.g.,

Piazzesi and Schneider (2011)):

rx
(n)
t+1 = (n− 1)(f (n−1,n)

t − i(n−1)
t+1 ), (9)

where rx(n)
t+1 denotes the excess return, f (n−1,1)

t is the time-t forward interest rate rate for the

period starting at t + 1 to t + n and i
(n−1)
t+1 is the time t + 1 yield yield of an n − 1 period

bond. Taking subjective expectations, Êt[.], of (9),

Êt[rx
(n)
t+1] = (n− 1)(f (n−1,n)

t − Êt[i(n−1)
t+1 ]). (10)

Taking objective expectations of (9),

Et[rx
(n)
t+1] = (n− 1)(f (n−1,n)

t − Et[i(n−1)
t+1 ]). (11)

If we assume, for simplicity, that investors price bonds with zero risk premia so that the

expectations hypothesis holds under investors’ subjective beliefs and hence Êt[rx
(n)
t+1] = 0,

then, substituting this into (10) and then into (11) yields objectively expected excess returns

Et[rx
(n)
t+1] = (n− 1)(Êt[i

(n−1)
t+1 ]− Et[i(n−1)

t+1 ]), (12)

i.e., objective expected excess returns are driven by deviations of investors’ subjective expec-

tations of future n period yields from objective expectations. These subjective expectations

of future yields are in turn likely to be driven by subjective expectations of future inflation.5

5One way of making the link between yield expectations and inflation expectations explicit would be to
combine a factor model of bond yields, most simply a single-factor model in which all bond yields are linear
in the short-term interest rate, with an interest-rate policy rule under which the short-term interest rate is a
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Suppose Êt[i
(n−1)
t+1 ] = ψÊt[πt+1] and Et[i

(n−1)
t+1 ] = ψEt[πt+1] for some constant ψ. Then,

Et[rx
(n)
t+1] = ψ(n− 1)(Êt[πt+1]− Et[πt+1]), (13)

i.e., the predictability of bond excess returns is linked to the predictable component of infla-

tion forecast errors Êt[πt+1]−Et[πt+1]. The more investors’ subjective expectations of higher

inflation (and hence higher future bond yields) exceed those under objective expectations,

the higher the objectively expected excess returns.

For this reason, we now investigate whether we find predictability patterns in bond returns

that are similar to those in survey forecast errors. Since only the mean component of the

learning-from-experience forecast emerged as an economically and statistically significant

predictor of survey forecast errors in Table 3, we focus on this single predictor here.

To measure long-term bond returns we use a return series of U.S. Treasury Bonds with

maturities between 61 and 120 months from the Fama Bond database at the Center for

Research in Security Prices (CRSP ) and we construct excess returns by subtracting the 1-

month T-Bill return (from Ibbotson Associates). We use quarterly returns as well as returns

compounded to annual returns in our return-prediction regressions.

The results are presented in Table 4. The OLS coefficient estimate with quarterly returns

in column (1) is 0.891 (s.e. 0.343), which yields an adj. R2 of 2.1%. For return-prediction

regressions this is an economically significant and plausible R2. With annual returns, the

magnitudes of coefficient and standard errors roughly quadruple and the adj. R2 rises to

7.7%.

The predictor variable in these regressions is highly persistent, and its innovations (which

are closely related to innovations in inflation) are contemporaneously correlated with long-

term bond returns. Under these circumstances, it is well known that inference based on

conventional OLS t-statistics leads to hypothesis tests that reject the null of no predictability

too frequently in finite samples (Stambaugh (1999)). For this reason, we construct confidence

function of current inflation
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Table 4: Predictability of bond excess returns

Quarterly and annual regressions of long-term U.S. Treasury bond returns in excess of 1-month Trea-
sury Bill returns on the mean component of the learning-from-experience forecast (calculated with
θ = 3.006). Quarterly and annual bond returns are calculated by compounding monthly returns. The
regression with annual returns uses non-overlapping windows. The sample period runs from 1952Q1
to 2010Q4. The table shows OLS estimates along with a 90% Bonferroni confidence interval following
Campbell and Yogo (2006) for the coefficient on aggregate experienced inflation.

Quarterly Annual
(1) (2)

Intercept -0.019 -0.075
OLS s.e. (0.008) (0.033)

Mean component of learning-from-experience forecast 0.891 3.614
OLS s.e. (0.343) (1.401)
Campbell-Yogo 90% Bonferroni CI [0.154, 1.384] [0.830, 6.624]

Adj. R2 0.021 0.077

AR order of predictor by BIC 2 1
90% CI for largest AR root [1.001, 1.008], [0.935, 1.002]

#Obs. 236 59

intervals using the methods of Campbell and Yogo (2006). Campbell and Yogo use local-to-

unity asymptotics to achieve a better approximation of the finite-sample distribution in cases

when the predictor variable is persistent. Their construction of the confidence interval uses

the Bonferroni method to combine a confidence interval for the largest autoregressive root of

the predictor variable with confidence intervals for the predictive coeffficient conditional on

the largest autoregressive root.

As Table 4 shows, the Campbell-Yogo confidence interval for the regression coefficient

of the predictor variable do not include zero, and they are approximately centered around

the OLS point estimate.6 This indicates that there is statistically reliable evidence in favor
6At the bottom of the table, we also report the estimated autoregressive lag length for the predictor variable,

as determined by the Bayesian Information Criterion (BIC), as well as a confidence interval for its largest
autoregressive root. These are among the inputs to Campbell and Yogo’s construction of confidence intervals.
The confidence intervals for the largest autoregressive root contain an explosive root. This is similar to the
dividend-price ratio regressions in Campbell and Yogo (2006), and it underscores the potential importance of
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of predictability. The mean component of the learning-from-experience forecast thus not

only predicts the forecast errors in survey expectations from the MSC, but it also helps

predict bond excess returns, which indicates that the learning-from-experience expectations-

formation mechanism may be relevant for understanding expectations formation of bond

market investors, too.

Unlike for the survey expectation forecast errors, there is, however, no evidence of out-of-

sample predictability. OOS regressions with a constant (i.e., predicting simply with the past

average return) yield a slightly lower OOS RMSE than regressions that include the mean

component of learning-from-experience forecasts as a predictor. This suggests that bond

market investors might be better than the respondents in the MSC and SPF in avoiding

out-of-sample predictable forecast errors. As a caveat, though, it is difficult to interpret the

out-of-sample results in return prediction regressions. Lack of OOS predictability is a common

feature of return prediction regressions, and, as discussed in Campbell and Thompson (2008),

OOS tests have low power to detect predictability.

6 Discussion and conclusion

Our empirical analysis shows that individuals’ inflation expectations differ depending on the

characteristics of the inflation process experienced during their life times. Differences in the

experienced mean inflation rate and the persistence of inflation shocks generate (time-varying)

differences in inflation expectations between cohorts. Younger individuals’ set of experienced

data is dominated by recent observations, while older individuals draw on a more extended

historical data set in forming their expectations.

This learning-from-experience expectations-formation mechanism can explain, for exam-

ple, why young individuals forecasted much higher inflation than older individuals following

the high inflation years of the late 1970s and early 1980s. This is due to a combination of a

high mean rate of inflation and high persistence in the short data set experienced by young

accounting for the persistence of the predictor variable in testing for predictability.
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individuals at the time. Learning-from-experience also provides an alternative and comple-

mentary mechanism to the sticky information hypothesis in Mankiw and Reis (2002) and

Carroll (2003) that contributes to the high level of disagreement about inflation expectations

around that time noted in Mankiw, Reis, and Wolfers (2003).

For the most recent periods towards the end of our sample in 2010, our results suggest

that individuals perception of the persistence of inflation shocks is close to zero, particularly

for young individuals. This suggests that unexpected movements in the inflation rate are

currently unlikely to move inflation expectations much. As argued in Roberts (1997), Or-

phanides and Williams (2005), and Milani (2007), these changes in individuals’ perceptions

of persistence are also likely to influence the persistence of inflation rates.

Even though the learning-from-experience framework is substantially different from more

conventional representative-agent applications of learning in that it generates heterogeneity

in inflation expectations, its implications for the average level of inflation expectations are

similar to those resulting from representative-agent constant-gain learning algorithms that

are popular in macroeconomics (see, e.g., Orphanides and Williams (2005); Milani (2007)).

There are, however, two important differences.

First, the learning-from-experience theory provides an alternative motivation for a constant-

gain learning at the aggregate level. With learning-from-experience, information in the dis-

tant past is discarded not only because individuals believe that structural shifts and pa-

rameter drift could occur, but also because individuals’ memory is bounded: Memory of

macroeconomic history is lost as new generations emerge whose subjective beliefs are shaped

by relatively recent experience. This is an additional reason why learning dynamics may be

perpetual, without convergence in the long-run.

Second, in the learning-from-experience framework, the heterogeneity between cohorts can

be exploited to estimate the parameter controlling the gain in individuals’ learning rule, and

hence the speed of updating in response to inflation surprises, from cross-sectional differences

alone, without using information about the level of average inflation expectations. This is
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useful, because identifying the gain from macro data seems to be difficult. In light of this,

it is remarkable that our estimate of the speed of updating, averaged across cohorts, are

quantitatively similar to those obtained in earlier work in macroeconomics that estimated

the speed of updating to fit macroeconomic time-series or aggregate survey expectations.
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Appendix

A Michigan Survey data

The inflation expectations data is derived from the responses to two questions, the first
is categorical, while the second one elicits a percentage response. For example, for 1-year
expectations the two questions are:

1. “During the next 12 months, do you think that prices in general will go up, or go down,
or stay where they are right now?”

2. “By about what percent do you expect prices to go (up/down) on average during the
next 12 months?”

As outlined in Curtin (1996), some adjustments to the raw data are necessary to address
some known deficiencies. We follow Curtin’s approach, which is also the approach used by
the Michigan Survey in constructing its indices from the survey data:

For respondents who provided a categorical response of “up” (“down”), but not a percent-
age response, we drew a percentage response from the empirical distribution of percentage
responses of those who gave the same categorical response of “up” (“down”) in the same
survey period. Prior to the February 1980 survey, respondents were not asked about percent-
age expectations if they responded (in the categorical first part of the question) that they
expected prices to decline. We assign a value of -3% to these cases before February 1980. In
most survey periods, they account for less than 2% of observations.

Starting in March 1982 the administrators of the Michigan survey implemented additional
probing, which revealed that the categorical response that prices will remain the “same” was
often misunderstood as meaning that the inflation rate stays the same. We use the adjustment
factors developed in Curtin (1996) to adjust a portion of “same” responses prior to March
1982 to “up”, and we assign a percentage response by drawing from the empirical distribution
of those observations in the same survey period with a categorical response of “up”.

B Imputation of percentage expectations from categorical re-
sponses

In the early years of the Michigan survey, only categorical responses about prices going “up”,
“down”, or stay the “same” were elicited, but no percentage responses. We nevertheless
attempt to use the information in those surveys in our analysis of percentage expectations
by imputing percentage responses from the categorical information. We do so by estimating
the relationship between categorical responses, the dispersion of categorical responses, and
percentage responses in those periods in which we have both categorical and percentage
response data. We conjecture that the average percentage response of individuals in an age
group should be positively related to the proportion of “up” responses and negatively to the
proportion of “down” responses.
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Figure A.1: Actual and imputed 1-year inflation expectations in excess of the full-sample
cross-sectional mean.

We first calculate the proportion of “up” and “down” responses, pupt,s and pdownt,s , within
each cohort s at time t (in this case t denotes a calendar month). We then run a pooled
regression of measured percentage inflation expectations, π̂et+1|t,s, on pupt,s and pdownt,s , including
a full set of time dummies, and obtain, for one-year expectations, the fitted values

π̃ht+h|t,s = ...time dummies... + 0.052pupt,s − 0.069pdownt,s (R2 = 35.3%)
(0.001) (0.004)

with standard errors in parentheses that are two-way clustered by quarter and cohort.
Because we employ time dummies in our main analysis, our main concern here is whether

the imputed expectations track well cross-sectional differences of expectations across age
groups, rather than the overall mean over time, and so we also estimate the relationship
between percentage expectations and categorical responses with time dummies included in
the regression.

Figure A.1 illustrates how the imputed percentage expectations compare with the actual
expectations in the time periods in which we have both categorical and percentage expec-
tations data. To focus on cross-sectional differences between age groups, the figure shows
the average fitted and actual values (in terms of four-quarter moving averages) for individ-
uals below 40 and above 60 years of age after subtracting the overall cross-sectional mean
expectation in each time period.
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Table A.1: Controlling for age-specific inflation rates

The estimation is similar as in Table 1, but with the experimental CPI for the elderly interacted with
age included as control variable. The sample runs from 1984Q1 to 2009Q4, the period for which lagged
12-month inflation rates from the experimental CPI for the elderly is available. Standard errors in
parentheses are two-way clustered by time and cohort.

(1) (2)

Gain parameter θ 2.702 3.901
(0.286) (0.633)

Sensitivity β 0.455 0.511
(0.092) (0.105)

Age 0.000
(0.000)

Age×(πElderly
t−1 − πt−1) -0.001

(0.002)

Time dummies Yes Yes

Adj. R2 0.244 0.245
#Obs. 5350 5350

C Controlling for age-specific inflation rates

We re-run the regressions from Table 1 with controls for age-specific inflation-rates. We
measure the inflation rates of the elderly from the experimental CPI for the elderly series
(CPI-E) provided by the Bureau of Labor Statistics. We calculate annualized quarterly log
inflation rates from the CPI-E, similar to our calculation of overall CPI inflation rates. We
then include in our regressions the differential between the CPI-E and CPI inflation rates,
πElderlyt−1 − πt−1, interacted with age.

Table A.1 presents the results. The inflation series based on the CPI-E is only available
from the end of 1983 onwards, and so the sample in this table is restricted to 1984Q1 to
2009Q4. As a basis for comparison, we therefore first re-run the regression without the
additional age-dependent inflation control on this shorter sample. The results in column
(1) show that the estimate of the gain parameter is similar to the earlier estimate in Table
1, but the sensitivity parameter β is estimated to be lower than before. Its magnitude is
still statistically, as well as economically significant, though. In column (2) we add the
interaction term between age-related inflation differentials and age, as well as age itself (the
πElderlyt−1 − πt−1 variable itself without the interaction is absorbed by the time dummies). We
obtain a small and insignificantly negative coefficient on the interaction term, which is not
consistent with the idea that inflation expectations of the elderly are positively related to the
inflation rates on the consumption basket of the elderly. Including age and the interaction
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term does, however, have some effect on the estimates for θ.

D Implied weighting of past data with learning from experi-
ence

The learning-from-experience algorithm in our analysis implicitly weights past observations
in almost exactly similar fashion as the (ad-hoc) weighting function in Malmendier and Nagel
(2011). Moreover, the parameter θ that controls the strength of updating in the framework
here maps into the parameter that controls the weighting function in Malmendier and Nagel
(2011). This makes the results easily comparable. For simplicity, we illustrate the connection
between the two weighting schemes in the case of the simple mean model, where an agent
tries to estimate the mean. But an analogous result applies in the AR(1) case or other
regression-based forecasts.

Consider an individual of age t− s making an inflation forecast at time t. The weighting
function in Malmendier and Nagel (2011) implies that this individual forms a weighted average
of past inflation, where the inflation rate observed at time t − k (with k ≤ t − s) gets the
following weight:

ωt,s (k) =

(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ . (A.1)

This implies that the most recent observation, i.e. time-t inflation, πt, receives the weight

ωt,s (0) =
1∑s

j=0

(
t−s−j
t−s

)λ . (A.2)

For comparison, in the learning-from-experience algorithm, the forecast τ1
t+1|t,s is a weighted

average of the prior-period forecast and πt,

τ1
t+1|t,s = (1− γt−s) τ1

t|t−1,s + γt,sπt. (A.3)

which implies that the most recent observation carries the weight ω̃t,s (0) = γt,s. Iterating,
one finds that earlier observations receive the weight

ω̃t,s (k) =
{

γt,s for k = 0
γt−k,s

∏k−1
j=0 (1− γt−j,s) for k > 0

. (A.4)

We now show that both weighting schemes are equivalent if the gain sequence is chosen to
be age-dependent in the following way:

γt,s =
1∑t−s

j=0

(
t−s−j
t−s

)λ (A.5)

We present a proof by induction. First, the choice of γt,s in (A.5) implies that ω̃t,s (0) =
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ωt,s (0). It remains to be shown that if ω̃t,s (k) = ωt,s (k), then ω̃t,s (k + 1) = ωt,s (k + 1)
(with k + 1 ≤ t− s). Thus, assume that

ω̃t,s (k) =

(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ . (A.6)

Then, from Eq. (A.4),

ω̃t,s (k + 1) = γt−s−k−1
(1− γt−s−k)
γt−s−k

ω̃t,s (k)

=

[∑t−s−k
j=0

(
t−s−j
t−s−k

)λ]
− 1∑t−s−k−1

j=0

(
t−s−j

t−s−k−1

)λ
(
t−s−k
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ

=

[∑t−s−k
j=0

(
t−s−j
t−s−k

)λ]
− 1∑t−s−k−1

j=0

(
t−s−j
t−s−k

)λ
(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
=

∑t−s−k−1
j=0

(
t−s−j
t−s−k

)λ
∑t−s−k−1

j=0

(
t−s−j
t−s−k

)λ
(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
=

(
t−s−k−1
t−s

)λ
∑t−s

j=0

(
t−s−j
t−s

)λ
= ωt,s (k + 1) ,

where for the third-to-last equality we multiplied numerator and denominator by
(
t−s−k−1
t−s−k

)λ
.

This concludes the proof.
Finally, we show that the gain sequence (A.5) can be approximated by

γt,s ≈
λ+ 1
t− s

,

i.e., by the gain specification in (4) with θ = λ+ 1. To see this write the gain in (A.5) as

γt,s =
(t− s)λ∑t−s

j=0 (t− s− j)λ
.

Focusing on the denominator of this expression, note that if one were to make the increments
j infinitesimally small (instead of being discrete steps of 1), the denominator would become∫ t−s
0 xλdx = 1

λ+1(t − s)λ+1. Therefore, in this limiting case of infinitesimal increments, we
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get

γt,s =
λ+ 1
t− s

.

In our case with quarterly increments, this approximation is, for all practical purposes, vir-
tually identical with the true gain sequence in (A.5).
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