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Abstract

Recent policy proposals have suggested taxing top incomes at very high rates on
the grounds that some or all of the highest wage earners are engaged in socially un-
productive or counterproductive activities, such as externality imposing speculation
in the financial sector. To address this, we provide a model in which agents can choose
between working in a traditional sector, where private and social products coincide,
and a crowdable rent-seeking sector, where some or all of earned income reflects
the capture of pre-existing output rather than increased production. We character-
ize Pareto optimal linear and non-linear income tax systems under the assumption
that the social planner cannot or does not observe whether any given individual is a
traditional worker or a rent-seeker. We find that optimal marginal taxes on the high-
est wage earners can remain remarkably modest even if all high earners are socially
unproductive rent-seekers and the government has a strong intrinsic desire for pro-
gressive redistribution. Intuitively, taxing their effort at a lower rate keeps private
returns to rent-seeking low and thus reduces wasteful entry by other agents into rent-
seeking activities.
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1 Introduction

The unwinding of the financial crisis over the past three years has exposed numerous
examples of highly compensated individuals whose apparent contributions to social out-
put proved illusory. Events like the recent housing bubble provide fertile ground for
“rent-seeking” activity: pursuing personal enrichment by extracting a slice of the existing
economic pie rather than by increasing the size of that pie. These highly salient examples
of rent-seeking activities have inspired calls for a more steeply progressive tax code. In
a recent debate hosted by The Economist, for example, Thomas Piketty has suggested
imposing a 80% marginal tax rate on incomes in excess of approximately $1.5 million. In
a New York Times Editorial (August 3, 2009), Paul Krugman argued for higher taxes on
“supersized incomes” in the context of discussing the profits from high speed trading, on
the grounds that “it is hard to see how traders who place their orders one-thirtieth of a
second faster than anyone else do anything to improve that social function.” Moreover, in
various countries, the introduction of very high taxes (up to 90%) on bonus payments for
top earners in the financial sector has been discussed recently on the grounds of similar
rent-seeking arguments.

The argument behind such proposals is intuitively appealing. If much of the economic
activity at high incomes is primarily socially unproductive rent-seeking or, in Piketty’s
words, “skimming,” then it would seem natural for a well designed income tax code to
impose high marginal rates at high income levels.1 This would discourage such behav-
ior while simultaneously raising revenues which could be used, e.g., to lower taxes and
encourage more productive effort at lower income levels.

The implications of such rent-seeking activities for optimal income taxation have not
been studied formally, however. The idea that a particularly high level of rent-seeking be-
havior at high earnings levels should imply high tax rates at the top may seem intuitively
correct, but it is not well grounded in formal theory. The goal of this paper is therefore
to provide a formal foundation for studying optimal taxation in economies with rent-
seeking. Moreover, we aim at exploring the implications of rent-seeking for optimal taxes
by comparing the taxes implied by traditional models with the those implied by models

1Bertrand and Mullainathan (2001) offer some formal evidence for rent-seeking activities among high
earners. Their research indicates that the responsiveness of a CEO’s pay to “lucky” increases in his or her
company’s profits is consistent with a crude “skimming” model of compensation. Philippon and Reshsef
(2006) argue that a substantial portion of financial sector compensation in their period of study represented
transitory rents. Moreover, Kaplan and Rauh (2010) argue that wage-and-salary compensation almost cer-
tainly understates total compensation within the financial sector, as unrealized compensation is an increas-
ingly important component of total compensation at the top end of the income distribution, particularly
among financial sector “superstars,” such as hedge fund managers and private equity investors.
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that explicitly incorporate rent-seeking.
To address these issues, we construct a model that can be most easily illustrated us-

ing the following simple, highly stylized economy. Consider a continuum of individuals
living on large arable plain with a small creek flowing through it. Individuals can either
farm the plain or pan for gold in the creek, but the agricultural (“traditional”) and the
gold-panning (“rent-seeking”) sectors have different production technologies. Farming is
a standard, constant returns to scale activity: if an individual doubles her farming effort,
her crop-output of doubles, and the economy’s total crop output increases accordingly.

Gold-panning is different because the creek is small relative to the population and con-
tains only a finite amount of gold. Because of this, there are decreasing returns to scale in
gold-panning effort: increases in aggregate gold-panning increase the total gold output
less than proportionally. Each individual gold-panner represents a negligible proportion
of the total gold output, however. As such, each prospector still faces linear private re-
turns to her efforts: if, e.g., she doubles her efforts, then she will “earn” twice as much
gold. This linear private return strictly exceeds the social marginal returns from her gold-
panning efforts, however, since a portion of the private return represents “skimming” of
gold that other panners would otherwise have found. This wedge between the social and
private returns to gold-panning is the crux of our model of rent-seeking.

Formally, if aggregate effort in the rent-seeking sector is E, then total output in the rent-
seeking sector is µ(E), where µ′(E) ≥ 0 and µ′′(E) ≤ 0 so that there are non-negative but
decreasing returns to scale in rent-seeking. Since each unit of (equivalent) effort is equally
productive, individual wages are proportional to the average return to rent-seeking effort,
µ(E)/E. When µ′′(E) < 0, the average return µ(E)/E exceeds the social marginal return
to effort, µ′(E). Wages therefore exceed the social marginal product of effort.

Individuals differ along two dimensions: in their farming skill and in their gold-
panning skill. θ measures their marginal return to effort, or wage, in the traditional
farming sector. Rent-seeking wages are equal to ϕµ(E)/E, where ϕ measures the gold-
panning skill of a given individual. The parameter ϕ thus measures her rent-seeking
wages relative to other potential prospectors. As described above, however, the level of
her rent-seeking wage depends on the aggregate efforts of all prospectors: as aggregate
rent-seeking effort E rises, potential rent-seeking wages decrease along with µ(E)/E.

Now consider the Pareto problem for optimal income taxation: design an income tax
that maximizes some weighted average of the utilities of the individuals in the economy.
In particular, suppose that the income tax that does not condition on whether income is
achieved in the rent-seeking or traditional sector. While such a restriction may seem ad
hoc in this simple example, it can be easily motivated in a more realistic model where
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rent-seeking activities are not perfectly concentrated in particular (easily observable) oc-
cupations. To a large degree, this also reflects the norm in existing tax codes, although
calls for bonus taxes in the financial sector would represent a movement away from this
norm.2 This norm might reflect tradition, the lack of a reliable test for the type of in-
come, or concerns about empowering a government to make the determination of just
how productive individual workers or professions “really” are.

This is a more challenging problem than a standard Mirrlees (1971) optimal tax prob-
lem for two reasons. First, an additional complication arises from the wage distribution
being endogenous. Fixing any given tax code, the decision of a given worker about which
sector to work in depends on the relative wages they can earn in the rent-seeking and tra-
ditional sectors. The former depends on how much effort other individuals are exerting
in the rent-seeking sector. Solving for the outcomes induced by that tax code thus in-
volves a fixed point problem: finding the level of aggregate rent-seeking effort E such
that the wages induced by E lead to sectoral choices and effort such that aggregate rent-
seeking effort is indeed E. The second challenge is that the distribution of skill-types is
two-dimensional, so standard techniques typically do not apply (see Rochet and Chone,
1998). We address these challenges by observing that for any given aggregate rent-seeking
effort E, the realized wage distribution is well defined, and, since taxes depend only on
income, a standard single-crossing property holds. This allows us to treat the problem
as a fixed point problem for E which is nested within a Mirrleesian optimal income tax
problem.

We start with considering linear income tax schedules and compare the set of Pareto
optimal marginal tax rates to the set of tax rates that would appear to be optimal for the
same economy to a social planner who failed to take rent-seeking into account. For this
purpose, we develop the notion of a “Self-Confirming Policy Equilibrium” (SCPE). Recall
that, with rent-seeking, the wage distribution is endogenous to the tax code. A SCPE
is a mutually-consistent tax policy/wage distribution pair such that a social planner who
naively believes that the wage distribution is exogenous (as in a standard Mirrlees model)
perceives the tax policy as optimal given the wage distribution induced by that policy.
Our first result is that, with linear taxation, the set of Pareto optimal tax rates is shifted
to the right compared to the SCPE set, formalizing the intuition that accounting for rent-
seeking makes higher tax rates optimal on average.

We then turn to non-linear taxation, allowing us to address the effect of rent-seeking
on the optimal progressivity of tax schedules. We first analyze the benchmark case where

2We also recognize that the different treatment of capital and earned income and imperfections in ac-
counting and monitoring can lead, in practice, to some sectoral difference in realized tax rates.
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the economy only consists of a rent-seeking sector. Comparing the set of Pareto optimal
and SCPE non-linear tax schedules, we find that the presence of rent-seeking does not
affect optimal progressivity in this case: Given some Pareto weights, all marginal keep
shares 1− T′(y) in a Pareto optimum are scaled down compared to the SCPE by the factor
β(E) ≡ µ′(E)E/µ(E), which is the elasticity of rent-seeking output with respect to total
rent-seeking effort. β(E) measures the divergence between marginal and average product
in the rent-seeking sector and thus captures the rent-seeking externality. Moreover, the
top marginal tax rate is given by 1− β(E), the Pigouvian corrective tax rate that makes
agents fully internalize the rent-seeking externality.

We then demonstrate that these results are fundamentally changed when both sectors
are present, and how misleading casual reasoning can be about the implications of rent-
seeking for optimal taxation in such a more general framework. In this case, marginal
tax rates and hence progressivity of the tax schedule depend on the share of rent-seekers
at a given wage. More surprisingly, the top marginal tax rate is less than the Pigouvian
correction 1 − β(E) even if all top wage earners are rent-seekers and the governments
strictly aims at redistributing towards low wage earners. We identify a sectoral shift effect
as the key reason for this result: Taxing the top earners at a lower rate increases total rent-
seeking effort E and therefore reduces private returns in the rent-seeking sector µ(E)/E.
This prevents other agents from entering the socially less productive rent-seeking sector.
We finally provide a quantitative example and show that this sectoral shift effect can be
strong and induce top marginal tax rates that are substantially lower than the Pigouvian
rate 1− β(E) that a single sector model with rent-seekers only would have prescribed.

Related Literature. Our work builds on two major strands of the economics literature:
the rent-seeking literature and the optimal income taxation literature. While rent-seeking
is a conceptually important element of our model, our methods more closely track the op-
timal income taxation literature, notably Mirrlees (1971), Diamond and Mirrlees (1971a,b),
and Diamond (1998). Until recently, the focus of the theoretical literature was on deriv-
ing results for a given assumed distribution of skills and social welfare function. Saez
(2001) focused instead on inferring optimal taxes from observed income distributions.
Moreover, Laroque (2005), Werning (2007) and Chone and Laroque (2010) study condi-
tions under which an observer can test whether an existing set of taxes is or is not Pareto
efficient. Notably, Werning (2007) infers wage-cum-skill distributions from income dis-
tributions as a test of optimality. In the same spirit, we characterize the set of Pareto
efficient tax policies rather than focusing on a particular social welfare function. In the
context of rent-seeking, however, the wage distribution is endogenous to the tax code,
so such earlier tests are potentially misleading. One might conclude that the tax code is
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indeed Pareto efficient given the inferred skill distribution under the (implicit and incor-
rect) assumption that the skill distribution is independent of the tax code. Our concept of
a self-confirming policy equilibrium, described above, is meant to capture this situation.
It is closely related to the recent literature on self-confirming equilibria in learning models
(e.g., Sargent, 2009, and Fudenberg and Levine, 2009).

Our paper also contributes to recent efforts to study optimal taxation under multidi-
mensional private heterogeneity. In a recent study of the optimal income taxation of cou-
ples, Kleven, Kreiner and Saez (2009) have made some progress along these lines (see also
Scheuer (2011) for an application to entrepreneurial taxation). Their information structure
is quite distinct from ours, however, as their second dimension of heterogeneity enters
preferences additively rather than as a standard skill type.

We build on pioneering work in the rent-seeking literature including Tullock (1967),
Krueger (1974), and Bhagwati (1980, 1982). Our model of rent-seeking is broad enough
to include a wide range of activities, such as the patent races discussed in Dixit (1987),
Loury (1979) and Dasgupta and Stiglitz (1980), socially useless but privately profitable fi-
nancial speculation discussed by Arrow (1973) and Hirshleifer (1971), or externalities (see
Sandmo (1975), who studies optimal commodity taxation in the presence of externalities).
Relatedly, the structure we use to model compensation in the rent-seeking sector is bor-
rowed from the search literature pioneered by Mortensen (1977). This is not coincidental:
production in the rent-seeking sector in the example we discussed above is equivalent to
“searching for gold.” Hungerbuhler et al.’s (2008) recent work also introduces search in
an optimal taxation problem, but their paper differs in that that “search” in their model is
for employment rather than search as employment, as it is here.

Our paper proceeds as follows. Section 2 describes our modeling framework and
the rent-seeking technology we study. Section 3 studies optimal linear taxation in this
framework. It focuses on the divergence between the set of optimal and self-confirming
linear tax rates in the presence of rent-seeking (Theorems 1 and 2). Sections 4 and 5 study
optimal non-linear taxation. The former presents our theoretical non-linear tax results.
Theorem 3 shows that rent-seeking does not, in itself, provide an argument for more
progressive taxation: in an economy with a single rent-seeking sector, failing to take rent-
seeking into account leads to tax rates that are suboptimally low but are nevertheless
optimally progressive. Theorem 4 contains our most surprising result: it shows that un-
der an intuitively plausible set of conditions in an economy with both rent-seeking and
ordinary earnings, the top marginal tax rate is optimally less than the Pigouvian correc-
tive tax rate even if the highest earners are all rent-seekers. Theorem 5 shows that failing
to take rent-seeking into account will generally result in Pareto inefficient taxes. Section
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5 offers some numerical simulations that illustrate Theorem 4: the concentration of rent
seekers among high earners does not ipso facto imply strongly progressive marginal tax
rates. Section 6 offers some concluding thoughts about the implications of our results and
possible extensions of our methods. Most proofs appear in the technical appendices.

2 Model and Approach

We consider an economy with two sectors: A traditional sector, where private and social
marginal products coincide, and a rent-seeking sector, where the private marginal prod-
uct exceeds the social marginal product. There is a unit-measure continuum of individual
workers who can choose to work in either one of the two sectors. Each individual is
endowed with a two-dimensional skill vector

(θ, ϕ) ∈ Θ×Φ, Θ = [θ, θ], Φ = [ϕ, ϕ],

where θ captures an individual’s skill in the traditional sector (which we also refer to as
Θ-sector), and ϕ captures her skill in the rent-seeking sector (also referred to as Φ-sector).
The distribution of individuals is described by a two-dimensional cdf F : Θ×Φ → [0, 1],
with associated pdf f (θ, ϕ). Preferences are characterized by a continuously differentiable
utility function u(c, e) defined over consumption c and effort e with uc > 0 and ue < 0.
In particular, we work with the specific form of quasilinear and isoelastic preferences, so
that

u(c, e) = c− eγ

γ
,

where γ > 1 and thus the wage elasticity of effort is constant and given by ε ≡ 1/(γ− 1).
Each individual chooses the sector she works in so as to maximize her wage. We

normalize the wage per unit of equivalent effort in sector Θ to 1, so w = θ for a Θ-sector
worker with skill level θ. The wage per unit of equivalent effort in the Φ-sector is instead
given by

w = ϕ
µ(E)

E
,

where E is the total equivalent effort in the Φ-sector, i.e.,

E =
∫

P(E)

ϕe(θ, ϕ)dF(θ, ϕ), where P(E) ≡
{

(θ, ϕ) ∈ Θ×Φ
∣∣∣∣θ < ϕ

µ(E)
E

}
,
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and µ(E) is the total output in the Φ-sector when aggregate sectoral effort is E. We assume
µ to be twice continuously differentiable with µ(0) = 0, µ′(E) > 0 and µ′′(E) < 0. This
captures the rent-seeking externality in a very general form. In particular, decreasing
returns in the rent-seeking sector give rise to a divergence between the social marginal
product of effort µ′(E) and the average product µ(E)/E > µ′(E) that individuals face as
their private wage. One extreme case (not considered here) would arise if µ(E) ≡ E for all
E, so that the rent-seeking problem disappears and we find ourselves back in a standard
Mirrlees economy since µ′(E) = µ(E)/E = 1. On the other hand, “pure” rent-seeking
occurs when µ(E) ≡ µ̄ for all E, so that there is a fixed rent to be captured in the rent-
seeking sector and any effort there is in fact completely unproductive since µ′(E) = 0.

To characterize Pareto efficient and SCPE allocations, we define Pareto weights as fol-
lows. With FE(w) ≡ F(w, wE/µ(E)) denoting the cdf of the wage distribution induced
by a given level of total effort E in the rent-seeking sector, we consider a set of welfare
weights Ψ(FE(w)), with Ψ : [0, 1] → [0, 1], Ψ(0) = 0, Ψ(1) = 1 and Ψ(x) weakly increas-
ing in x. The social planner maximizes

∫
V(w)dΨ(FE(w)) where V(w) is the utility of

all agents with wage w. The weighting function Ψ captures the possible redistributional
motives in our framework and thus allows us to trace out the entire constrained Pareto
frontier of the economy. Like the tax code, it treats any two individuals with the same
wage as identical, so it expressly excludes caring about whether an individual is em-
ployed in the traditional or rent-seeking sector. Moreover, it depends on relative rather
than absolute wages: if the entire distribution of wages shifts down, the welfare weights
at any point in the distribution are unchanged.

For instance, if Ψ(x) ≡ x for all x ∈ [0, 1], then all individuals are weighted ac-
cording to their population shares and there is no redistributive motive. We refer to
this benchmark case as “utilitarian” in the following. If Ψ(x) ≥ x for all x ∈ [0, 1],
then Ψ(FE(w)) ≥ FE(w) for any w ∈ (wE, wE), where wE ≡ max{θ, ϕµ(E)/E} and
wE ≡ max{θ, ϕµ(E)/E} are the lowest and highest wages in the economy. Such Pareto
weights thus describe the part of the Pareto frontier where the social planner at least
weakly wants to redistribute from higher to lower wage individuals. We focus on this
case in several of our results and call it a “regular” set of Pareto weights. We also some-
times refer to the resulting allocations as regular.

3 Optimal Linear Taxation

This section considers optimal linear taxes (t, T), where t is the marginal tax rate and T
is the uniform lump-sum transfer. As discussed in the preceding section, the presence of
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rent-seeking makes the wage distribution endogenous to the tax code. A higher tax rate
t induces lower effort at any wage, hence lower effort in the rent-seeking sector E. This
lower effort E increases the private returns to rent-seeking µ(E)/E, partially offsetting the
effects of higher taxes. This endogeneity makes finding the T associated with any linear
tax t non-trivial. We first solve for these lump-sum transfers. Then we formally define
and solve for the set of SCPE tax rates—i.e., the set of tax rates which are an SCPE for
some set of Pareto weights. This set turns out to be an interval under some mild regularity
conditions.

We then present results relating the set of SCPE linear tax rates to the set of Pareto
optimal linear tax rates. Theorem 1 shows that the SCPE tax rates are “too low” in the
following sense: the lowest SCPE tax rates are Pareto inefficient, and there are Pareto ef-
ficient tax rates strictly higher than any SCPE tax rate. If the economy only consists of
a rent-seeking sector, we can characterize the SCPE and Pareto optimal tax rates explic-
itly and show that for a sufficiently strong rent-seeking externality (as parameterized by
an elasticity β(E) ≡ µ′(E)E/µ(E) → 0), no SCPE is Pareto optimal (Theorem 2 and its
corollaries).

3.1 Feasible Linear Tax Allocations

Each individual takes E and hence her wage wθ,ϕ(E) ≡ max
{

θ, ϕ
µ(E)

E

}
as given. For a

given linear income tax (t, T), the individual solves

max
c,e

u(c, e) s.t. c ≤ (1− t)wθ,ϕ(E)e + T (1)

with solution cθ,ϕ(t, T; E), eθ,ϕ(t, T; E) and indirect utility Vθ,ϕ(t, T; E) ≡ u(cθ,ϕ(t, T; E),
eθ,ϕ(t, T; E)). This leads us to the following definition:

Definition 1. A feasible linear tax allocation is an allocation {cθ,ϕ(t, T; E), eθ,ϕ(t, T; E)}, a
tax policy (t, T) and total equivalent effort in the Φ-sector E such that
(i) {cθ,ϕ(t, T; E), eθ,ϕ(t, T; E)} solves problem (1) given (t, T) and E,
(ii) the government budget balances:

T = t

µ(E) +
∫

Θ×Φ\P(E)

θeθ,ϕ(t, T; E)dF(θ, ϕ)

 , (2)

and
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(iii) total Φ-sector effort E is consistent with individual’s choices:

E =
∫

P(E)
ϕeθ,ϕ(t, T; E)dF(θ, ϕ). (3)

Note that finding feasible linear tax allocations involves solving a fixed point problem
due to requirement (iii). In particular, a given linear tax policy (t, T) and total rent-seeking
effort E determine after-tax wages (1− t)wθ,ϕ(E) and thus individual effort eθ,ϕ(t, T; E).
Then the induced total Φ-sector effort, given by the right-hand side of (3), has to be equal
to the level of E that we started from for the allocation to be internally consistent.

We anticipate that the set of feasible linear tax allocations is a simple one-parameter
family, parameterized by the level of taxes t. To establish this, however, it turns out to be
more convenient to parameterize the set of feasible linear tax allocations via the level of
effort in the Φ-sector, E, as the following lemma shows.

Lemma 1. The set of feasible linear tax allocations is a one-parameter family indexed by E, with

t(E) = 1− E
µ(E)

(
E

k(E)

)γ−1

(4)

and

T(E) = µ(E) +
(

E
k(E)

)γ
[

m(E)
(

E
µ(E)

) γ
γ−1
((

k(E)
E

)γ−1 µ(E)
E

− 1

)
− k(E)

]
, (5)

where
k(E) ≡

∫
P(E)

ϕ
γ

γ−1 dF(θ, ϕ) and m(E) ≡
∫

Θ×Φ\P(E)

θ
γ

γ−1 dF(θ, ϕ). (6)

Proof. Notice first that fixing E also fixes P(E) as well as k(E) and m(E) by equation (6). Using the func-
tional form of preferences, we obtain

eθ,ϕ(t, T; E) =
(
(1− t)wθ,ϕ(E)

) 1
γ−1 (7)

and substituting in equation (3) yields

E =
∫

P(E)

ϕ

(
(1− t)

µ(E)
E

ϕ

) 1
γ−1

dF(θ, ϕ) =
(

(1− t)
µ(E)

E

) 1
γ−1

k(E) (8)

by the definition of k(E) in equation (6). Solving equation (8) for t yields equation (4). Finally, the unique
lump-sum transfer T(E) associated with the feasible linear tax allocation with Φ-sector effort E is defined
by equation (2). Substituting equations (4), (6) and (7) yields (5).
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Equation (4) gives the unique tax rate t(E) consistent with a feasible linear tax allo-
cation with Φ-sector effort E. Note that µ(E)/E and k(E) are decreasing in E (the latter
because E′ > E ⇒ P(E′) ⊂ P(E)). Hence, t(E) is decreasing in E, and the after tax unit
wages (1− t(E)) and (1− t(E))µ(E)

E in the two sectors are increasing in E along the set of
feasible linear tax allocations.

3.2 Self-Confirming Policy Equilibria and Pareto Optima

3.2.1 Definitions

A social planner who is aware of rent-seeking recognizes the endogeneity of the wage
distribution with respect to tax policy and thus maximizes

max
t,T,E

∫
Θ×Φ

Vθ,ϕ(t, T; E)dΨ(F(θ, ϕ)) s.t. t
∫

Θ×Φ
wθ,ϕ(E)eθ,ϕ(t, T; E)dF(θ, ϕ) ≥ T (9)

for some given weighting function Ψ(F),3 which leads to the following definition:

Definition 2. A Pareto optimum with linear taxes is a feasible linear tax allocation such that
(t, T, E) solves program (9).

Hence, a sophisticated planner takes into account that changing tax policy will affect
occupational choice and wages in the rent-seeking sector, and hence the overall wage
distribution, which is equivalent to directly optimizing over E in addition to (t, T) within
the set of feasible tax allocations.

In contrast, suppose a government or social planner is unaware of rent-seeking in the
economy so that it takes the distribution of wages wθ,ϕ(E) and thus E as given when
optimizing over tax policy (t, T). Then it views its planning problem as the solution to
the Pareto-program

max
t,T

∫
Θ×Φ

Vθ,ϕ(t, T; E)dΨ(F(θ, ϕ)) s.t. t
∫

Θ×Φ
wθ,ϕ(E)eθ,ϕ(t, T; E)dF(θ, ϕ) ≥ T, (10)

taking E as given and for some given set of Pareto-weights Ψ(F). Based on this, we define
a SCPE as follows:

3Note that the budget constraints in (2) and (10) are equivalent for feasible linear tax allocations since∫
Θ×Φ

wθ,ϕ(E)eθ,ϕ(t, T; E)dF(θ, ϕ) = µ(E) +
∫

Θ×Φ\P(E)

θeθ,ϕ(t, T; E)dF(θ, ϕ).
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Definition 3. A self-confirming policy equilibrium (SCPE) with linear taxes is a feasible
linear tax allocation such that (t, T) solves program (10), taking E as given.

The idea behind this definition is that, for a given a tax policy (t, T) and preferences
u(c, e), the government is able to back out the wage distribution from the observed income
distribution, as pointed out by Saez (2001). In the SCPE, the tax policy (t, T) is then
indeed optimal given this wage distribution. In other words, the SCPE describes a fixed
point where, when the government identifies the wage distribution from the equilibrium
income distribution and tax policy and views it as fixed, the optimality of the equilibrium
tax policy is confirmed. We are now ready to characterize the set of SCPE and compare it
the the set of Pareto optima.

3.2.2 Characterization of the Set of SCPE

Fixing a given E also fixes the resulting distribution FE(w) of wages wθ,ϕ(E). In addition,
define the lower and upper extremes in the support of the wage distribution (as a function
of E) as

wE ≡ inf
θ∈Θ,ϕ∈Φ

{
wθ,ϕ(E)

}
= max

{
θ,

µ(E)
E

ϕ

}
, and

wE ≡ sup
θ∈Θ,ϕ∈Φ

{
wθ,ϕ(E)

}
= max

{
θ,

µ(E)
E

ϕ

}
.

Then the following result provides a preliminary but useful characterization of the set of
SCPE linear tax rates.

Lemma 2. For a given E and the resulting wage distribution FE(w), the set of SCPE linear tax
rates t is characterized by

ξ(E)
ξ(E)

≤
[

1− t
(γ− 1)(1− t)

]
≤ ξ(E)

ξ(E)
(11)

with ξ(E) ≡
∫ wE

wE
w

γ
γ−1 dFE(w), ξ(E) ≡ w

γ
γ−1
E and ξ(E) ≡ w

γ
γ−1
E .

Proof. Taking the distribution FE(w) of wages wθ,ϕ(E) = max{θ, ϕ
µ(E)

E } as fixed, the planner believes that
it faces the budget constraint:

T(t; E) = t
∫ wE

wE

w ((1− t)w)
1

γ−1 dFE(w) = tν(t; E),

where

ν(t; E) ≡ (1− t)
1

γ−1

∫ wE

wE

w
γ

γ−1 dFE(w)
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is total output at E (using equation (7)). Since the planner (incorrectly) regards FE(w), wE and wE as being
tax-independent, she believes that

∂T(t; E)
∂t

= ν(t; E)− t
(1− t)

1
γ−1−1

(γ− 1)

∫ wE

wE

w
γ

γ−1 dFE(w) = ν(t; E)
[

1− t
(γ− 1)(1− t)

]
Hence, given Pareto weights Ψ(FE(w)), the planner attempts to solve:

max
t

T(t; E) + (1− t)
γ

γ−1
γ− 1

γ

∫ wE

wE

w
γ

γ−1 dΨ(FE(w)).

The necessary condition for the planners problem,

(1− t)
1

γ−1

∫ wE

wE

w
γ

γ−1 dΨ(FE(w)) = ν(t; E)
[

1− t
(γ− 1)(1− t)

]
,

can therefore be satisfied for some Ψ(F) if and only if:

(1− t)
1

γ−1 w
γ

γ−1
E ≤ ν(t; E)

[
1− t

(γ− 1)(1− t)

]
≤ (1− t)

1
γ−1 w

γ
γ−1
E .

Using the definition of ν(t; E) and rearranging yields equation (11).

The idea behind Lemma 2 is the following. For a fixed wage distribution, a naive
social planner believes that the highest Pareto optimal linear tax rate is the one preferred
by the lowest wage individuals with wage wE and the lowest Pareto optimal tax rate
is the one preferred by the highest wage earners with wE. All tax rates in between are
also Pareto efficient since they would solve (10) for some Pareto weights function Ψ(F).
This gives rise to the bounds in equation (11). However, in fact the wage distribution
FE(w) depends on E and thus on t (through (4)). We can therefore denote the set of
linear tax rates perceived as Pareto optimal given the observed wage distribution FE(t)(w)
induced by some given t by Υ(t) ≡ [t(t), t(t)], which is the interval of tax rates satisfying
inequality (11) in Lemma 2. Then a given tax rate t is a SCPE for some set of Pareto
weights precisely when t ∈ Υ(t). We next explore properties of the set of SCPE linear tax
rates that the correspondence Υ(t) gives rise to. We will then compare SCPE tax rates to
the set of Pareto optimal ones.

Note first that, for any t, t(t) ∈ (0, 1) and t(t) ∈ [−∞, 0).4 Furthermore, since limt→−∞ 1−
t

(γ−1)(1−t) = γ
γ−1 , we have t(t) > −∞ if and only if ξ(E)

ξ(E) < γ
γ−1 . We make the following

distributional assumption to ensure that this is the case.

4The zero bounds follow from the fact that with quasilinear and isoelastic preferences, the SCPE for
utilitarian welfare weights with Ψ(F) = F has t = 0.
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Assumption 1. Let

λθ ≡
∫

Θ×Φ

(
θ

θ

) γ
γ−1

dF(θ, ϕ) and λϕ ≡
∫

Θ×Φ

(
ϕ

ϕ

) γ
γ−1

dF(θ, ϕ).

Then we assume λθ, λϕ > (γ− 1)/γ.

Under this condition, we immediately obtain the following result:

Lemma 3. Under Assumption 1, there exists a finite x such that t(t) > x > −∞ for all t.

Proof. Observe that

ξ(E)
ξ(E)

= min


∫ wE

wE

(w
θ̄

) γ
γ−1 dFE(w),

∫ wE

wE

(
w

µ(E)
E ϕ

) γ
γ−1

dFE(w)

 ≥ min
{

λθ , λϕ

}
.

Hence, under Assumption 1, ξ(E)
ξ(E) < γ

γ−1 , and t(t(E)) > x > −∞, where t(E) is the feasible linear tax
allocation tax rate associated with E and

x =
(γ− 1)

(
1−min{λθ , λϕ}

)
1 + (γ− 1)

(
1−min{λθ , λϕ}

) .

The intuition behind Assumption 1 and Lemma 3 is as follows. As discussed above,
the upper and lower bounds t(t) and t(t) are the linear tax rates preferred by the low-
est and highest wage earners, respectively. They reflect a tradeoff between lowering the
marginal tax rate t and the associated reduction in the lump-sum transfer T required by
budget balance (2). The lowest wage earner always favors a positive tax rate t(t) ∈ (0, 1)
and the associated positive lump-sum transfer T > 0. In contrast, the highest wage earn-
ers’ preferred tax policy is always a wage subsidy t(t) < 0 and a lump-sum tax (a negative
lump-sum transfer T < 0). If the wage density falls off very quickly for higher wages, the
highest wage earners’ preferred wage subsidy is in fact infinite with t → −∞ because
in this case financing such a wage subsidy does not require a large increase in the lump-
sum tax. Assumption 1 rules out this case by requiring that the skill distribution has a
sufficient mass of high-skilled types in both skill dimensions.

Assumption 1 thus ensures that the correspondence Υ(t) is finite-interval valued with
x < t(t) ≤ t(t) < 1 for all t. Since t(t) and t(t) are both continuous, it is easy to show that
there exists some lowest and highest fixed point of Υ(t), denoted tSC and tSC. In fact, t(t)
has a unique fixed point as the following lemma shows:

Lemma 4. Consider the upper bound t(t) of the correspondence Υ(t). Then dt(t)/dt < 1 at all
points where t = t(t).

13



Figure 1: SCPE tax rates

Proof. See Appendix A.1.

Lemma 4 implies that the upper bound of the correspondence Υ(t) can only “down-
ward cross” the 45◦-line, so that there must exist a unique crossing at tSC. Figure 1 il-
lustrates the correspondence Υ(t) and the resulting set of SCPE tax rates for the case in
which it is an interval given by [tSC, tSC].5 It lies between the (negative) tax rate at which
the lower bound of the correspondence Υ(t) crosses the 45◦ line and the positive tax rate
at which the top bound of the correspondence crosses it.

3.3 Comparing SCPE and Pareto Optimal Allocations

Intuitively, we expect that, since they fail to take into account the negative externality
associated with effort in the rent-seeking sector, SCPE tax rates will be “too low” relative
to Pareto optima. The following result establishes this formally. Specifically, it shows that
the lowest SCPE tax rate (and anything below it) is Pareto inefficient, and that there are
tax rates higher than any SCPE tax rate which are efficient.

Theorem 1. (i) There exist Pareto optimal feasible linear tax allocations with t > tSC.
(ii) Suppose that Assumption 1 is satisfied, so that tSC > −∞ exists. Then any feasible linear tax

5It is straightforward to provide conditions on fundamentals, namely λθ and λϕ, so that t(t) also has a
unique fixed point and the set of SCPE linear tax rates is indeed an interval.
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allocation with t ≤ tSC is Pareto inefficient.

Proof. See Appendix A.2.

Theorem 1 formalizes the intuition that the set of Pareto optimal linear tax rates is
shifted to the right compared to the set of SCPE linear tax rates in terms of its bounds.
Note that an interval structure of the set of SCPE tax rates is not required for this result.
Theorem 1 only makes use of Assumption 1, so that t(t) > x > −∞ for all t and hence
tSC exists, and of Lemma 4, so that t(t) ≥ t for all t ≤ tSC. Then the result can be shown
to follow from the fact that a marginal tax increase has an additional positive welfare
effect in the full Pareto program compared to the SCPE program since it reduces total
rent-seeking effort E and thus shifts the wage distribution up.

3.4 Example: A One Sector Rent-Seeking Economy

For illustrative purposes, we briefly consider the special case where the economy only
consists of the rent-seeking sector. This case would emerge if all the skill density was
concentrated in the ϕ-dimension, giving rise to a continuous cdf F(ϕ) on Φ = [ϕ, ϕ]. The
following result provides a simple comparison between the SCPE and Pareto optimal
linear tax allocations for a fixed set of Pareto weights Ψ(F).

Theorem 2. Consider a one sector rent-seeking economy and suppose Assumption 1 holds.6 Then
for any set of Pareto-weights Ψ(F), there is a unique SCPE tax rate tSC and a unique Pareto
optimal tax rate tPO such that

1− tSC =

(
1 + (γ− 1)

(
1−

∫
Φ ϕ

γ
γ−1 dΨ(F(ϕ))∫

Φ ϕ
γ

γ−1 dF(ϕ)

))−1

(12)

and
1− tPO = β(EPO)(1− tSC), (13)

where EPO is the level of rent-seeking equivalent effort at the Pareto optimum given Ψ(F) and

β(E) ≡ µ′ (E) E
µ (E)

< 1

denotes the elasticity of aggregate output in the rent-seeking sector with respect to E.

Proof. See Appendix A.3.

6More precisely, Assumption 1 becomes λϕ ≡
∫ ϕ

ϕ

(
ϕ
ϕ

) γ
γ−1 dF(ϕ) > (γ− 1)/γ in this special case.
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If the economy only consists of a rent-seeking sector, the formulas for the optimal tSC

and tPO for any given Ψ(F) take a very intuitive form. In particular, note that tSC can
be expressed only in terms of fundamentals and is completely independent of the rent-
seeking technology µ(E) and decreasing in the term

∫
Φ ϕ

γ
γ−1 dΨ(F(ϕ))

/ ∫
Φ ϕ

γ
γ−1 dF(ϕ),

which measures the redistributive motives implied by Ψ(F). Notably, if Ψ(F) is regular
(i.e. Ψ(F) ≥ F for all F ∈ [0, 1]), then tSC ≥ 0 and tSC increases as Ψ(F) shifts more
weight to lower skilled individuals. tSC is also increasing (in absolute value) in γ, which
is inversely related to the wage elasticity of effort ε = 1/(γ− 1).

As equation (13) makes clear, tPO shares these comparative statics with respect to re-
distributive motives with tSC, but in addition is such that the keep share 1− tPO is scaled
down compared to the SCPE by the elasticity of the rent-seeking technology β(E). This
elasticity captures the divergence between the marginal product µ′(E) and the private
returns µ(E)/E and hence the rent-seeking externality. Since β(E) < 1, tPO > tSC for any
given set of Pareto weights Ψ(F). A special case arises for utilitarian welfare, so that the
redistributive motives disappear.

Corollary 1. Suppose Ψ(F) is utilitarian with Ψ(F) = F for all F ∈ [0, 1]. Then tSC = 0 and
tPO = 1− β(EPO) > 0.

The utilitarian case isolates the pure corrective motive for taxation in our framework.
While the SCPE tax rate is zero in this case, the Pareto optimum is associated with a
strictly positive, Pigouvian tax that makes agents internalize and is increasing in the rent-
seeking externality. Notably, in the extreme case of µ(E) = µ so that β(E) = 0 (a “pure”
rent-seeking economy), tPO = 1 and all effort is completely crowded out. On the other
hand, if β(E) = 1 because µ(E) = E, the rent-seeking problem would disappear and
tPO = tSC = 0.

Theorem 2 immediately implies the following result for the entire sets of SCPE and
Pareto optimal linear tax rates in a one sector rent-seeking economy:

Corollary 2. In a one sector rent-seeking economy, the set of SCPE with linear taxes is indepen-
dent of the structure of the production function µ(E) and given by the interval1− 1

γ
(

1− k
k

)
+ k

k

, 1− 1

γ
(

1− k
k

)
+ k

k

 ,
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where k =
∫

Φ ϕ
γ

γ−1 dF(ϕ), k = ϕ
γ

γ−1 and k = ϕ
γ

γ−1 . The set of Pareto-optimal linear tax rates is1− β(EPO)(
γ
(

1− k
k

)
+ k

k

) , 1− β(EPO)(
γ
(

1− k
k

)
+ k

k

)
 .

The sets of both SCPE and Pareto optimal linear tax rates are always both intervals in a
one-sector economy and the interval of Pareto optimal tax rates is shifted to the right com-
pared to the SCPE interval. For instance, consider the rent-seeking technology µ(E) = Eβ

with β ∈ (0, 1), so that the elasticity β(E) = β is constant. Then for sufficiently low β,
every Pareto efficient tax rate is higher than every SCPE tax rate, so that the entire set of
SCPE tax rates is Pareto inefficient.

4 Optimal Non-Linear Taxation

The analysis above indicates that – as one would have expected – taking rent-seeking into
account prescribes higher levels of (linear) taxation. In this section, we extend our anal-
ysis to non-linear taxation. This constitutes a methodological contribution as we show
how our notions or SCPE and Pareto optimality can be operationalized with non-linear
taxation in our rent-seeking framework. In addition, by relaxing the assumption that
all agents in the economy face the same marginal tax rates, it also allows us to address
a number of relevant policy questions using our model. For instance, how does rent-
seeking affect marginal tax rates at different income levels? In other words, what are the
implications of rent-seeking for the optimal progressivity of the tax schedule?

We first show that, with non-linear taxation, marginal tax rates depend on the share
of rent-seekers at a given wage level. However, in the special case of a one sector model
where all agents are rent-seekers, rent-seeking does not affect the optimal degree of pro-
gressivity in the tax system. This is even though taxing high incomes at a higher rate
allows for additional redistribution towards lower wage earners through two channels
in such an economy: it generates additional tax revenue that can be transferred to lower
incomes, but it also increases everyone’s wage by discouraging effort and thus reducing
total E and increasing the private returns to effort µ(E)/E. We demonstrate that this
second channel does nonetheless not lead to a more progressive tax schedule, and any
impetus that rent-seeking arguments can provide for an enhanced (or decreased) progres-
sivity of the tax schedule must therefore result from the sectoral composition of workers
at different skill levels.

Second, we study a particularly salient aspect of progressivity by exploring the op-

17



timal top marginal tax rate in a two-sector model (with both traditional effort and rent-
seeking). Our main insight here is that, even if the highest wage earners are all rent-
seekers and the social planner has a preference for redistribution towards lower wage
earners, the optimal top marginal tax rate is less than the Pigouvian rate 1 − β(E) that
would let agents fully internalize the rent-seeking externality, as derived in the previous
section. The key reason is a sectoral shift effect that we discuss in detail below: Taxing the
top earners (or any rent-seekers) at a lower rate increases total rent-seeking effort E and
therefore reduces private returns in the rent-seeking sector µ(E)/E. This prevents other
agents from entering the socially less productive rent-seeking sector. In our quantitative
analysis in the following section 5, we show that this sectoral shift effect can be strong and
induce top marginal tax rates that are substantially lower than the Pigouvian rate 1− β(E)
that a single sector model with rent-seekers only would have prescribed.

Third, we consider the efficiency of SCPE non-linear tax schedules. In the linear tax-
ation framework discussed in the preceding section, there existed SCPE tax rates that
were Pareto efficient and others that were Pareto inefficient (unless with a single sector
the rent-seeking externality was so strong that the entire set of SCPE was inefficient). In
contrast, we show here that under general conditions no regular SCPE is Pareto-optimal
with non-linear taxes. Thus, the more flexible non-linear tax instrument allows for Pareto
improvements from taking rent-seeking into account under a much wider range of cir-
cumstances.

4.1 A Decomposition and Definitions

We start with defining SCPE and Pareto optima when the tax schedule can be non-linear
and thus allocations are only constrained by resource and incentive constraints. For this
purpose, it turns out to be useful to decompose the problem of finding SCPE or Pareto
optimal allocations into two steps: The first (referred to as “inner” problem) involves
finding the optimal resource feasible and incentive compatible allocation for a fixed level
of rent-seeking effort E and thus a fixed wage distribution with

FE(w) ≡ F
(

w, w
E

µ(E)

)
, (14)

f θ
E ≡

∫ w E
µ(E)

ϕ
f (w, ϕ)dϕ, f ϕ

E (w) ≡ E
µ(E)

∫ w

θ
f
(

θ, w
E

µ(E)

)
dθ, (15)
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and fE(w) ≡ f θ
E(w) + f ϕ

E (w) and [wE, wE] with

wE ≡ max
{

θ, ϕ
µ(E)

E

}
and wE ≡ max

{
θ, ϕ

µ(E)
E

}
.

Note that E also fixes the occupational choice of all individuals and therefore the sectoral
composition of the economy, so that we call f θ

E(w) the density of wages in the traditional
sector and f ϕ

E (w) in the rent-seeking sector conditional on E. fE(w) is thus the aggregate
wage density for given E, adding the densities of individuals with a given wage in both
sectors.

The second step then involves finding the optimal (or, in the case of an SCPE, consis-
tent) level of E. We refer to this step as the “outer” problem.

4.1.1 Pareto Optima with Non-linear Taxes

Since the wage distribution is fixed for given E, the inner problem for the Pareto optimum
is an almost standard Mirrlees problem with the only complication that we have to take
into account the sectoral composition of the economy. More precisely, the induced level of
equivalent effort in the rent-seeking sector has to be consistent with the level of E that we
started from. For some given Pareto weights Ψ(F), we therefore define the inner problem
as follows:

W(E) ≡ max
V(w),e(w)

∫ wE

wE

V(w)dΨ(FE(w)) (16)

s.t.
V′(w)− e(w)γ

w
= 0 ∀w ∈ [wE, wE] (17)

µ(E)−
∫ wE

wE

we(w) f ϕ
E (w)dw = 0 (18)

∫ wE

wE

we(w) fE(w)dw−
∫ wE

wE

(
V(w) +

e(w)γ

γ

)
fE(w)dw ≥ 0. (19)

We employ the standard Mirrleesian approach of optimizing directly over allocations,
i.e. over effort e(w) and consumption c(w) profiles. It is more convenient to write allo-
cations in terms of utilities V(w) ≡ c(w) − e(w)γ/γ and efforts e(w) and then to infer
consumption.

The social planner then maximizes some weighted average of the individuals’ utili-
ties V(w) subject to a set of constraints. (19) is a standard resource constraint and con-
straint (18) guarantees that total effort in the rent-seeking sector indeed sums up to E (or,
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equivalently, the sum of all incomes in the rent-seeking sector equals µ(E)). Finally, the
allocation V(w), e(w) needs to be incentive compatible, i.e.

V(w) ≥ V(w′) +
e(w′)

γ

(
1−

(
w′

w

)γ)
∀w, w′ ∈ [wE, wE]. (20)

It is a well-known result that the global incentive constraints (20) are equivalent to the lo-
cal incentive constraints (17) and the monotonicity constraint that income y(w) ≡ we(w)
must be non-decreasing in w.7 We follow the standard approach of dropping the mono-
tonicity constraint and checking ex-post that it is satisfied. If the solution to problem (16)
to (19) does not satisfy it, optimal bunching would need to be considered.

Once a solution V(w), e(w) to the inner problem has been found, the resulting welfare
is given by W(E), so that the outer problem for the Pareto problem simply becomes

max
E

W(E). (21)

This leads us to the following definition:

Definition 4. A Pareto optimum with non-linear taxes is a level of total equivalent rent-seeking
effort E and an allocation V(w), e(w) such that (i) E solves the outer problem (21) and (ii)
V(w), e(w) solves the inner problem (16) to (19) given E.

Note that marginal tax rates T′(y(w)) can be backed out from an allocation V(w), e(w)
by using the workers’ first order condition

1− T′(y(w)) =
e(w)γ−1

w
. (22)

4.1.2 Self-Confirming Policy Equilibria with Non-linear Taxes

Suppose the social planner does not take into account rent-seeking in the economy. Then
for a fixed level of E and hence a fixed wage distribution, she views the optimal tax prob-
lem as a standard Mirrlees problem, so that the inner problem becomes

W̃(E) ≡ max
V(w),e(w)

∫ wE

wE

V(w)dΨ(FE(w))

s.t.
V′(w)− e(w)γ

w
= 0 ∀w

7See, for instance, Fudenberg and Tirole (1991), Theorems 7.2 and 7.3.
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∫ wE

wE

we(w) fE(w)dw−
∫ wE

wE

(
V(w) +

e(w)γ

γ

)
fE(w)dw ≥ 0.

Hence, the inner problem for a SCPE is a strictly relaxed version of the inner problem for
the Pareto optimum, dropping constraint (18). This is because the naive social planner is
not aware of the fact that the wage distribution is endogenous and thus total rent-seeking
effort has to hit E. However, for the equilibrium to be self-confirming, when computing
the total rent-seeking effort implied by the solution e(w), namely

Ẽ(E) =
E

µ(E)

∫ wE

wE

we(w) f ϕ
E (w)dw, (23)

then we have to be at a fixed point such that E = Ẽ(E). In other words, in a SCPE, the
planner takes the wage distribution as fixed and designs an optimal tax schedule given
this distribution. Then the wage distribution induced by this tax schedule has to be equal
to the original wage distribution, so that the planner finds herself confirmed in the view
that the wage distribution is fixed (even though it actually is not once we were to move
away from the fixed point). We thus have the following definition:

Definition 5. A Self-Confirming Policy Equilibrium (SCPE) with non-linear taxes is a level
of total equivalent rent-seeking effort E and an allocation V(w), e(w) such that (i) E is a fixed
point of Ẽ(E) defined in (23) and (ii) V(w), e(w) solves the inner problem (16) s.t. (17) and (19)
given E.

Hence, while the inner problem for a SCPE is a relaxed version of the inner problem
for a Pareto optimum, the outer problem is in fact a fixed point problem rather than an
optimization.8

4.2 Marginal Tax Rate Formulas from the Inner Problems

In this subsection, we demonstrate that our approach allows us to derive transparent
formulas for optimal marginal tax rates both for Pareto optima and SCPE conditional on
E and thus a wage distribution. In fact, given some Pareto weights Ψ(F), we have the
following result based on solving the inner problems (16) s.t. (17) and (19) (and (18) in the
case of a Pareto optimum):

8Note that an equivalent way of describing a SCPE in our framework is to define it is a level of E and
an allocation V(w), e(w) such that, given E, the allocation V(w), e(w) solves problem (16) to (19) including
constraint (18), but (18) is not binding at the solution. The latter condition makes sure that we are at a fixed
point of Ẽ(E).
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Proposition 1. Fix E and let ξ denote the multiplier on constraint (18) in the Pareto problem (16)
to (19). Then

1− T′(y(w)) =

(
1− ξ

f ϕ
E (w)

fE(w)

)(
1 + γ

Ψ(FE(w))− FE(w)
w fE(w)

)−1

(24)

for all w ∈ [wE, wE] at a Pareto optimum. Instead, in a SCPE

1− T′(y(w)) =
(

1 + γ
Ψ(FE(w))− FE(w)

w fE(w)

)−1

. (25)

Proof. See Appendix B.1.

Let us start with interpreting the formula for marginal tax rates in a SCPE as given by
(25). T′(y(w)) ≥ 0 at all income levels if and only if Ψ(F) is regular, and it is increasing
in Ψ(FE(w))− FE(w), i.e. in the degree to which Ψ(F) shifts weight to lower wage indi-
viduals compared to FE(w). This captures the redistributive effect of an increase in the
marginal tax rate at w. Moreover, T′(y(w)) is decreasing in the wage elasticity of effort
ε = 1/(γ − 1) and the wage density fE(w), which are both related to the distortionary
effects at w (see also Diamond (1998)).

Interestingly, the formula for marginal tax rates at a Pareto optimum shares this struc-
ture, but adds to it a corrective factor that transparently captures the Pigouvian motive for
taxation in our framework. Notably, it is such that all marginal keep shares 1− T′(y(w))
are scaled down by 1− ξ f ϕ

E (w)/ fE(w), where ξ is the Lagrangian on constraint (18) and
f ϕ
E (w)/ fE(w) is the share of rent-seekers at wage level w. This is intuitive as it is saying

that the optimal correction, which makes agents internalize the rent-seeking externality,
is proportional to the fraction of rent-seekers at w and the shadow cost of the rent-seeking
constraint (18). In particular, it disappears if f ϕ

E (w) = 0 at w, or if constraint (18) does not
bind, which would be the case at a SCPE.

However, the comparison between marginal tax rates at SCPE and Pareto optima,
even for the same weighting function Ψ(F), is not straightforward since ξ and E are in
fact endogenous, with the former depending on E, which is in turn determined from the
respective outer problems. Since Pareto optima and SCPE will in general involve different
levels of E, they will also differ in their wage distributions FE(w) and thus fE(w) and
f ϕ
E (w). We will therefore next explore the determination of E (and thus ξ) by considering

the outer problems in more detail. The following immediate implications of Proposition
1 will be prove useful for this.

Corollary 3. The top marginal tax rate T′(y(wE)) is zero in any SCPE. In any Pareto optimum,
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it is given by

T′(y(wE)) = ξ
f ϕ
E (wE)

fE(wE)
.

Notably, T′(y(wE)) = ξ if all top earners are rent-seekers.

Thus, while SCPE share the typical “no distortion at the top” property with a standard
optimal taxation problem, a Pareto optimum will impose a top marginal tax rate that still
reflects the corrective motive for taxation in our framework, which crucially depends on
the value of ξ and the share of rent-seekers at the top. The same is true for all wage levels
in the case of utilitarian welfare:

Corollary 4. Suppose Ψ is utilitarian, i.e. Ψ(F) = F for all F ∈ [0, 1]. Then

T′(y(w)) = ξ
f ϕ
E (w)

fE(w)
∀w ∈ [wE, wE]

in any Pareto optimum and T′(y(w)) = 0 for all w ∈ [wE, wE] in any SCPE.

Given our quasilinear preferences, all redistributive motives disappear for utilitarian
welfare, so that the corresponding SCPE involves no taxation whatsoever (the laissez-
faire equilibrium). The utilitarian Pareto optimum in contrast involves a marginal tax rate
that again exclusively reflects the corrective motive for taxation, just like the top marginal
tax rate in the case of general Pareto weights.

4.3 Optimal Size of the Rent Seeking Sector from the Outer Problem

We now turn to the outer problem to determine the equilibrium level of the rent-seeking
sector E and thus ξ, which has turned out to be a key input in the marginal tax rate
formula (24).

4.3.1 A General Formula

We start with the following decomposition of the welfare effect of a marginal increase in
E from the outer problem for a Pareto optimum (21):

Proposition 2. For any given Pareto optimum (i.e. any given set of Pareto weights Ψ(F)), the
welfare effect of a marginal change in total equivalent rent-seeking effort E can be decomposed as
follows:

W ′(E) = ξµ′(E) + ξS + Z, (26)
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where

S ≡
∫ wE

wE

we(w)
d f θ

E(w)
dE

dw (27)

is the sectoral shift effect and

Z ≡ −1− β(E)
E

((1− ξ)µ(E)− D1 − ξD2) (28)

is the wage shift effect with

D1 ≡
∫ wE

wE

e(w)γ (Ψ(FE(w))− FE(w))
d

dw

(
f ϕ
E (w)

fE(w)

)
dw (29)

and

D2 ≡
∫ wE

wE

w2e′(w)
f ϕ
E (w) f θ

E(w)
fE(w)

dw. (30)

Proof. See Appendix B.2.

Proposition (2) shows that a change in E leads to a change in welfare W(E) that can be
divided into three effects. First, there is a direct effect on constraint (18), captured by the
first term in (26). Second, there is a sectoral shift effect S given by equation (27). In par-
ticular, since a marginal increase in E reduces the private returns µ(E)/E and thus wages
in the rent-seeking sector, individuals who were indifferent between being a worker or
a rent-seeker before the change will leave the rent-seeking sector and move to the tradi-
tional sector. Then S measures the total income that is shifted to the traditional sector
through their move. This effect is key to our analysis in the following and illustrated in
Figure 2. Note that, by (15),

d f θ
E(w)
dE

=
1

µ(E)
(1− β(E)) w f

(
w, w

E
µ(E)

)
> 0

so that S > 0 whenever f (θ, ϕ) has full support on [θ, θ]× [ϕ, ϕ]. Intuitively, since private
returns µ(E)/E exceed the social marginal product µ′(E) in the rent-seeking sector, the
sectoral shift effect is always welfare improving and S therefore positive. However, it
would disappear in a one sector economy where all agents are rent-seekers and hence
f θ
E(w) = 0 for all w and E.

Finally, the third effect in (26) is the wage shift effect Z. It results from the fact that, as
observed above, increasing E reduces the wages in the rent-seeking sector as µ(E)/E falls.
This leads to a downward shift in the rent-seeking and overall wage distributions f ϕ

E (w)
and fE(w), even when keeping the occupational choice of agents fixed. This effect is
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Figure 2: The sectoral shift effect

the most involved, which is why we present an intuitive derivation of its decomposition
in equations (28), (29) and (30) in the following subsection. Appendix B.2 provides a
different proof based on the Lagrangian for the inner problem.

4.3.2 Understanding the Wage Shift Effect

Directly computing the wage shift effect by brute force, as in Appendix B.2, is cumber-
some. We therefore present a variational argument to derive the decomposition in Propo-
sition 2. To that end, first recall that the wage of a rent-seeker is ϕµ(E)/E. Hence,

dw
dE

= −ϕ
µ(E)

E2

(
1− µ′(E)E

µ(E)

)
= −1− β(E)

E
w, (31)

where β(E) = µ′(E)E/µ(E) is the output elasticity of the rent-seeking technology and
hence 1− β(E) is the Pigouvian corrective tax that would let agents fully internalize the
rent-seeking externality. A small shift ∆E in E thus changes a given rent-seeker’s wage
from w to w − ((1− β(E))/E)w∆E. The wage shift effect is the welfare consequence of
such a small shift ∆E.

By the envelope theorem, we can compute the welfare effect of this wage shift by
holding the optimal schedules e(w) and V(w) constant. The wage shift thus involves
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moving rent-seekers to effort

e
(

w− 1− β(E)
E

w∆E
)
≈ e(w)− e′(w)

1− β(E)
E

w∆E

and to utility

V
(

w− 1− β(E)
E

w∆E
)
≈ V(w)−V′(w)

1− β(E)
E

w∆E.

It is easier to compute the effects of this shift by breaking it into two sequential sub-
shifts, which we define pointwise at each wage w. The first sub-shift holds the wage w
constant, and changes the schedules e(w) and V(w) for all workers in both the rent-seeking
and traditional sectors. The second sub-shift re-allocates effort and utility between wage
w rent-seekers and wage w traditional workers while at the same time changing the wage
of the rent-seekers only. More formally, we define:
Sub-Shift 1: At each w, let e(w) and V(w) change to ẽ(w) and Ṽ(w) for all agents, with

ẽ(w) ≡ e(w)−
f ϕ
E (e)

fE(w)
e′(w)

1− β(E)
E

w∆E,

and

Ṽ(w) ≡ V(w)−
f ϕ
E (w)

fE(w)
V′(w)

1− β(E)
E

w∆E.

Sub-Shift 2: At each w, let the wage change from w to w− 1−β(E)
E w∆E for the rent-seekers

only. Their effort therefore changes from ẽ(w) to

e
(

w− 1− β(E)
E

w∆E
)
≈ e(w)− e′(w)

1− β(E)
E

w∆E.

The effort of wage w traditional workers changes from ẽ(w) back to e(w). Similarly, utility
of the rent-seekers changes from Ṽ(w) to

V
(

w− 1− β(E)
E

w∆E
)
≈ V(w)−V′(w)

1− β(E)
E

w∆E,

and the utility of traditional workers changes from Ṽ(w) back to V(w).
By construction, the total change in effort e(w) and utility V(w) by (original) wage

w workers in sub-shift 2 in exactly zero. To see this, note that each rent-seeker’s effort
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changes by

(
e(w)− e′(w)

1− β(E)
E

w∆E
)
−
(

e(w)− e′(w)
1− β(E)

E
w∆E

f ϕ
E (w)

fE(w)

)

= −e′(w)
1− β(E)

E
f θ
E(w)

fE(w)
w∆E,

and each traditional worker’s effort changes by

e(w)− ẽ(w) = e′(w)
1− β(E)

E
f ϕ
E (e)

fE(w)
w∆E.

These are equal in absolute value and have opposite signs when weighted by the masses
f ϕ
E (w) and f θ

E(w) of rent-seekers and traditional workers at wage w, respectively. An
analogous argument shows that our decomposition into two sub-shifts makes sure that
the total change in utility V(w) among (original) wage w workers in sub-shift 2 is also
zero. Sub-shift 1 is thus constructed such that the total change in effort e(w) and utility
V(w) for all workers is exactly equal to the change in e(w) and V(w) induced by the wage
shift for the rent-seekers only, at each wage w.

This is a useful decomposition precisely because the welfare consequences of sub-
shift 1 are zero by the envelope theorem. Sub-shift 2 is where all of the welfare effects
occur, and this sub-shift involves only a pointwise re-allocation of e(w) and V(w) across
individuals within the two sectors. We can therefore compute the welfare consequences
of the wage shift effect (i.e. sub-shift 2) as follows.9

1. Because total utility V(w) and effort e(w) across both sectors are held constant at
each w, there are no welfare effects from changing V(w) in (16) or (19) or e(w) in
(19), where the changes are weighted by the total population density fE(w).

2. The Pareto weights effect that captures the change in Ψ(FE(w)) in (16), which results
from the wage shift within the rent-seeking sector, is exactly zero at each wage w.
To wit: the change in the Pareto weight on the wage w rent-seekers is

−ψ(FE(w)) fE(w) f θ
E(w)

1− β(E)
E

w,

where f θ
E(w)((1− β(E))/E)w measures the mass of traditional workers between w

and w − ((1 − β(E))/E)w – i.e. those for whom the rent-seekers used to have a

9We drop the ∆E-terms here, so that the effects are interpreted in “per unit change in E” terms.
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higher wage and now have a lower wage. The change in Pareto weight on the wage
w traditional workers is, similarly,

ψ(FE(w)) fE(w) f ϕ
E (w)

1− β(E)
E

w.

Weighting these terms by the sectoral densities f ϕ
E (w) and f θ

E(w) shows that they
are equal in absolute value and and have opposite signs.

3. The direct wage effect from the change in rent-seeking wages in (18) and (19) is

−(1− ξ)we(w) f ϕ
E (w)

1− β(E)
E

. (32)

Integrating this across all wages yields

−(1− ξ)
µ(E)

E
(1− β(E)). (33)

This effect is easy to understand: it captures the welfare reduction from the lowered
wages of the rent-seekers, keeping their effort fixed.

4. The effect of the change in e(w) on (18) is

−ξw2e′(w)
f ϕ
E (w) f θ

E(w)
fE(w)

1− β(E)
E

(34)

and again integrating over all wages gives

−ξ
1− β(E)

E

∫ wE

wE

w2e′(w)
f ϕ
E (w) f θ

E(w)
fE(w)

dw ≡ −ξ
1− β(E)

E
D2 (35)

D2 thus captures the effect of the effort re-allocation in the rent-seeking sector. Note
that it would disappear in a one sector rent-seeking economy with f θ

E(w) = 0 for all
w.

5. Finally, let us consider the effect on the incentive constraints (17). To compute these,
notice that the incentive constraints are, by construction, satisfied by the original
and the final allocations. The incentive effects in sub-shift 2 are therefore equal and
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opposite to the incentive effects in sub-shift 1, which are easy to compute:

∫ wE

wE

f ϕ
E (w)

fE(w)
1− β(E)

E

(
wV′(w)η′(w) + γe(w)γ−1e′(w)η(w)

)
dw

= −1− β(E)
E

∫ wE

wE

(
−

f ϕ
E (w)

fE(w)
d

dw
[e(w)γη(w)]

)
dw, (36)

where η(w) is the multiplier on the incentive constraint (17) at w, and η(w) =
Ψ(FE(w)) − FE(w) from the necessary conditions for V(w). The incentive effects
of sub-shift 2 are equal and opposite to this, i.e. given by ((1− β(E))/E)D1, where,
after integrating by parts (and using η(wE) = η(wE) = 0),

D1 ≡
∫ wE

wE

d
dw

(
f ϕ
E (w)

fE(w)

)
e(w)γ (Ψ(FE(w))− FE(w)) dw (37)

Hence, D1 captures the incentive effects of the wage shift in the rent-seeking sector,
and it disappears whenever the share of rent-seekers is constant across wages, as
would be the case in a one sector economy.

Putting these effects together, we see that the total welfare effect of the wage shift in
the rent-seeking sector is

Z = −1− β(E)
E

((1− ξ)µ(E)− D1 − ξD2) (38)

as claimed in Proposition 2.

4.3.3 Example: A One Sector Rent-Seeking Economy

Before considering the general implications of Proposition 2 for ξ and thus marginal tax
rates in any Pareto optimum, let us again turn to the special benchmark case where all
agents are rent-seekers. In particular, suppose all the skill density is concentrated in the ϕ-
dimension with pdf f (ϕ) and cdf F(ϕ) so that f θ

E(w) = 0 for all w and E. Then obviously
S = D1 = D2 = 0, so that setting W ′(E) = 0 at the Pareto optimum and (26) implies

ξ = 1− β(E).

This leads to the following comparison between Pareto optimum and SCPE for given
Pareto weights Ψ(F):
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Theorem 3. Consider a one sector rent-seeking economy. Then

1− T′(y(ϕ)) = β(E)
(

1 + γ
Ψ(F(ϕ))− F(ϕ)

ϕ f (ϕ)

)−1

in a Pareto optimum and

1− T′(y(ϕ)) =
(

1 + γ
Ψ(F(ϕ))− F(ϕ)

ϕ f (ϕ)

)−1

in a SCPE given Ψ(F), for all ϕ ∈ Φ.

Proof. The result immediately follows from (i) equations (24) and (25) with f ϕ
E (w) = fE(w) in Proposition

1, (ii) the fact that w = ϕµ(E)/E, FE(w) = FE(ϕµ(E)/E) = F(ϕ) and thus fE(w) = f (ϕ)E/µ(E), and (iii)
ξ =1− β(E) by equation (26) in Proposition 2 (setting W ′(E) = 0 for a Pareto optimum) since S = D1 =
D2 = 0 in a one sector rent-seeking economy.

Theorem 3 shows that the marginal tax rate formula for a SCPE in a one sector rent-
seeking economy shares the same structure as the general formula in Proposition 1, but
is now given explicitly in terms of fundamentals, namely the skill distribution f (ϕ), the
redistributional motives captured by Ψ(F) and the elasticity of effort ε = 1/(γ− 1). In a
Pareto optimum, the marginal keep share at each skill level is scaled down compared to
the SCPE by the Pigouvian corrective factor β(E), similar to what we observed in Theo-
rem 2 for the case of linear taxation.

Observing that this correction is uniform across individuals immediately leads to the
following corollary:

Corollary 5. For any given set of Pareto-weights Ψ(F) and any given skill type ϕ, the marginal
tax rate is higher in the Pareto optimum compared to the SCPE. The progressivity of the tax
schedule, as measured by the ratio of marginal keep shares

1− T′(y(ϕ))
1− T′(y(ϕ′))

for any ϕ, ϕ′ ∈ Φ,

is the same in the Pareto-optimum and SCPE.

Corollary 5 shows that rent-seeking does not, in and of itself, provide a motive for in-
creased progressivity in marginal tax rates, at least not given our preference assumptions.
Note, however, that the comparison of progressivities is based only on the relationship
between marginal rates at different income levels. Two systems with a 20% and 40% flat
tax rate, respectively, which are used to finance lump-sum transfers are thus treated as
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equally progressive. Moreover, it is important to note that incomes y(ϕ) will be differ-
ent in a Pareto optimum and a SCPE, even for the same skill type ϕ and Pareto weights.
Hence, the result is specific to individuals, not income levels. This is not particularly prob-
lematic, however, in our framework. It is natural to consider measures of progressivity
that are scale independent (so that, e.g., changing the units of income does not affect the
measure). And it is straightforward to show that the pre-tax income in the SCPE is simply
a proportional reduction of the pre-tax income in the Pareto optimum under the hypothe-
ses of Corollary 5. The same result would apply to incomes for any scale-independent
progressivity measure.

The result in Corollary 5 is particularly surprising in view of the fact that, in an econ-
omy with rent-seeking, taxing higher wage earners at higher rates allows for additional
redistribution through two channels: The first is standard and results from the additional
tax revenue that can be transferred to lower incomes. In addition, however, redistribu-
tion can now also occur by affecting wages directly. A higher marginal tax rate on high
wage earners discourages their effort and thus reduces E. This in turn increases µ(E)/E
and thus everyone’s wage, including the wages of the bottom earners. Nevertheless, as
the result shows, this additional effect does not affect the optimal progressivity of the tax
schedule.

Theorem 3 implies that the top marginal tax rate is T′(y(ϕ)) = 1− β(E) > 0 in any
Pareto optimum and zero in any SCPE. Thus, in a one sector economy, the top rate is
exactly equal to the Pigouvian corrective tax. The same result is true for the entire tax
schedule with utilitarian welfare:

Corollary 6. Consider a one sector rent-seeking economy and suppose Ψ(F) is utilitarian. Then
T′(y(ϕ)) = 0 in any SCPE and T′(y(ϕ)) = 1 − β(E) > 0 in any Pareto optimum for all
ϕ ∈ [ϕ, ϕ].

Hence, with utilitarian welfare, the optimal tax schedule in fact involves a flat marginal
tax rate and collapses back to the linear taxation case discussed in Corollary 1.

4.4 Top Marginal Tax Rates

Let us return to the general case of a two sector economy, so that the sectoral shift effect
S and the re-allocation and incentive components of the wage shift effect, namely D1 and
D2, do not disappear. Then we first have the following result:

Proposition 3. ξ > 0 in any regular Pareto optimum.

Proof. See Appendix B.3.
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The proof of Proposition 3 involves showing that the wage shift effect Z from Proposi-
tion 2 is negative whenever the Pareto weights imply a weak redistributive motive from
high to low wage agents, i.e. when Ψ(F) is regular. This is intuitive since Z measures the
welfare effect of a wage reduction for a part of the population, namely all rent-seekers.
Since µ′(E) and S are positive, ξ > 0 then follows directly from setting W ′(E) = 0 in
(26). The rent-seeking problem thus leads to a strictly positive top marginal tax rate
T′(y(wE)) = ξ f ϕ

E (w)/ fE(w) at any regular Pareto optimum in which the share of rent-
seekers is non-zero at the top.

Furthermore, using (29) and (30) in (26) and setting W ′(E) = 0 yields

ξ = (1− β(E))
µ(E)− D1

µ(E) + SE + (1− β(E)) D2
. (39)

The following Theorem summarizes the implications of these insights for the top
marginal tax rate:

Theorem 4. Consider any regular Pareto optimum with the following properties:
(i) effort e(w) is weakly increasing in w and
(ii) the share of rent seekers f ϕ

E (w)/ fE(w) is weakly increasing in w.
Then

0 ≤ T′(y(wE)) = ξ
f ϕ
E (w)

fE(w)
< 1− β(E)

even if all top earners are rent-seekers.

Theorem 4 provides a surprising result for our general framework: Even if the top
earners in the economy are all rent-seekers, the optimal top marginal tax rate is less than
the full Pigouvian correction 1− β(E). This contrasts with the result in Theorem 3 for a
one sector economy. Indeed, we showed there that the marginal keep share at the top of
the income distribution was 1− β(E), so the after-tax hourly wage of the highest earners
was simply ϕµ′(E) – i.e. exactly equal to the marginal social product of effort. In other
words, with a single rent-seeking sector, the optimal top rate was “non-distortionary”: it
was positive and exactly equal to the Pigouvian correction for the rent-seeking externality.

One might be tempted to expect a similar result to apply to the more general two
sector model when only rent-seekers are the top earners. In fact, since the top earners
are all rent-seekers, rent-seeking imposes a negative externality, and the government has
a desire to redistribute from high-earners to low earners, this seems like a clear case for
high marginal tax rates on high earners, as discussed in the introduction. As Theorem 4
demonstrates, however, this intuition is not complete. The key reason is the additional
sectoral shift effect not present in a one sector economy: By lowering the marginal tax
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rate on the top earning rent-seekers, total equivalent effort E increases and thus wages
in the rent-seeking sector fall. As a consequence, some agents now find it profitable to
leave the rent-seeking sector and become traditional workers. Since the traditional sector
is socially more productive, this shift is always welfare enhancing (S > 0).

As discussed above, the increase in total rent-seeking equivalent effort E has addi-
tional effects in a two-sector economy, which result from the fact that agents in both sec-
tors must be treated the same conditional on the wage w, namely the effort re-allocation
and incentive effects D1 and D2.10 The assumptions in Theorem 4 make sure that these
effects go in the same direction as the sectoral shift effect, so that both D1 and D2 are also
positive. Note, however, that these are only sufficient assumptions, so that ξ < 1− β(E)
is possible even when they are violated for some wage levels. In the quantitative analy-
sis in section 5, we will verify these assumptions and demonstrate that the top marginal
tax rate can be substantially lower than what the full Pigouvian correction would have
suggested due to the sectoral shift effect present in our framework.

When Ψ(F) is utilitarian, the incentive effect D1 vanishes so that the assumptions in
Theorem 4 can be relaxed as follows:

Corollary 7. Consider a utilitarian Pareto optimum with the property that effort e(w) is weakly
increasing in w. Then

0 ≤ T′(y(w)) = ξ
f ϕ
E (w)

fE(w)
< (1− β(E))

f ϕ
E (w)

fE(w)
∀w.

In this case, the marginal tax rate is less than the Pigouvian corrective tax multiplied
by the share of rent-seekers at w no matter how where the rent-seekers are located within
the wage distribution.

4.5 Inefficiency of SCPE with Non-linear Taxes

In our analysis of linear taxation with rent-seeking, we demonstrated that the set of Pareto
optimal linear tax rates was shifted upwards compared to the SCPE set, but there could
exist some overlap so that some SCPE were in fact also Pareto optimal. The following
final result shows how this is changed under non-linear taxation:

Theorem 5. Any regular SCPE with a non-zero share of rent-seekers at the bottom or top wage is
Pareto inefficient.

10The proof of Proposition 2 in Appendix B.2 makes the no-discrimination constraints underlying these
effects explicit.
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Proof. See Appendix B.4.

With non-linear taxation, regular SCPE are Pareto dominated in a broad set of cir-
cumstances. The proof is based on two observations. First, all regular SCPE have a
non-decreasing tax schedule, since T′(·) ≥ 0 by (25). Second, all Pareto optima with
a non-decreasing tax schedules have a strictly positive marginal tax rates at the highest
(lowest) incomes when there are rent-seekers at the highest (lowest). Since SCPEs always
involve zero marginal tax rates at the extremes, no regular SCPE can be Pareto optimal.

5 A Numerical Example

This section first parameterizes a stylized two-sector economy with a rent-seeking sector
that is socially completely unproductive at the margin. We then compute a Pareto optimal
and a SCPE tax system for this economy for a government with a particular set of welfare
weights. Despite the fact that the highest earners are all rent-seekers in this economy, we
find that marginal taxes in the Pareto optimum remain modest and display approximately
the same degree of progressivity at high incomes as in the corresponding SCPE. We finally
discuss the quantitative results.

5.1 A Parametrization

In order to compute optimal and SCPE tax systems, we specify a two-diemnsional skill
distribution, Pareto weights, the elasticity of labor supply ε and the output function µ(E).
We take labor supply to be unit elastic (so that γ = 2) and set µ(E) = µ̄ = 10. Hence, we
consider the extreme case of a fixed rent to be captured in the rent-seeking sector, so that
all rent-seeking effort there is entirely unproductive at the margin. Note that this would
imply a Pigouvian corrective tax rate of 1− β(E) = 100%.

We use a skill distribution on support Θ×Φ = [6, 16]× [30, 200] which is independent
across the two dimensions, so that F(θ, ϕ) = Fθ(θ)Fϕ(ϕ). We further assume that Fθ and
Fϕ are Pareto distributions with Pareto parameters αθ = 7 and αϕ = 2, respectively. So
long as rent-seekers are the highest earners, this is consistent with empirical evidence on
the skill distribution of the highest earners (see e.g. Saez, 2001). We truncate both distri-
butions at the top of the support and renormalize accordingly. Furthermore, to prevent
bunching at w = θ = 16, we re-scale Fθ so that fθ(θ) = 0, and renormalize accordingly.

Finally, we assume Pareto weights of the form Ψ(F) = 1− (1− F)ρ. The parameter ρ

thus characterizes the magnitude of the government’s desire for redistribution: ρ = 1 for
a utilitarian social planner, and ρ → ∞ for a Rawlsian one. We take ρ = 1.5, so that the
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Figure 3: Marginal and average tax rates as a function of the wage

government has a motive for redistribution from high to low wage workers and Ψ(F) is
regular.

5.2 Simulation Results

Figure 3 shows the marginal tax rate T′(y(w)), the tax schedule T(y(w)), the average tax
rate T(y(w))/y(w) and the share of rent-seekers f ϕ

E (w)/ fE(w) as a function of the wage w
both for the Pareto optimum and the SCPE resulting from our parametrization above. It
indicates that optimal tax rates are higher than the SCPE tax rates. This leads individuals
at a given wage to exert less effort relative to the SCPE. The total rent-seeking effort E in
the Pareto optimum is consequently lower than in the SCPE (by approximately 7%), and
the pre-tax wages of the rent-seekers are higher (also by about 7%). This explains why
the support of the wage distribution is extended further at the top in the Pareto optimum
compared to the SCPE. However, the total rent-seeking output µ as a share of total income
is barely changed at the Pareto optimum compared to the SCPE (21.5% as opposed to
20.4% at the SCPE). The same observation holds for the share of rent-seekers: it is even
slightly higher in aggregate at the Pareto optimum (14.5%) than the SCPE (12.4%).

Since θ = 16, all agents earning a wage higher than 16 are exclusively rent-seekers.
Thus, in both the SCPE and the Pareto optimum, the top earners are in the socially com-
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pletely unproductive rent-seeking sector. Given that the government has a strict desire
to redistribute to low earners, this seems like a “slam-dunk” case for high – and highly
progressive – marginal tax rates on high earners. In fact, the full Pigouvian corrective
tax rate would be 100% in this example. Yet, Figure 3 indicates decidedly modest top
marginal tax rates in the Pareto optimum: they are less then 45%, and even decreasing to
30% for the very top earners. As discussed in detail above, the sectoral shift effect provides
the key intuition. Raising taxes on the highest earners reduces their effort. Since they
are all rent-seeking, a reduction in their effort raises µ(E)/E and the private returns to
rent-seeking effort. This makes rent-seeking more appealing to traditional sector work-
ers, some of whom shift into the rent-seeking sector. Since the social marginal returns to
rent-seeking are lower than the returns to traditional work, this shift is strictly undesir-
able. In line with Theorem 4, the presence of the sectoral shift effect therefore leads to
top marginal tax rates that are strictly less than the Pigouvian correction and, as Figure 3
indicates, substantially less so.

Figure 4: Marginal and average tax rates as a function of income

Figure 4 presents the same results as a function of income y(w) as opposed to the wage
w. Even though the Pareto optimum induces higher wages as seen in Figure 3, the higher
marginal tax rates discourage effort and therefore the support of the income distribution
does not extend as far at the top as in the SCPE. Otherwise, similar qualitative results
apply.
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Figure 5: Effort as a function of the wage and progressivity as a function of income

The left panel in Figure 5 demonstrates that the assumptions in Theorem 4 are satisfied
in our numerical example: individual effort e(w) is increasing in the wage w, and the
share of rent-seekers is increasing as seen above, so that the additional re-allocation and
incentive effects go in the same direction as the sectoral shift effect in pushing the top
marginal tax rate below the full Pigouvian rate. A fortiori, income y(w) = we(w) is
therefore strictly increasing in the wage, so that the monotonicity constraint is satisfied
and bunching does not need to be considered. The right panel in Figure 5 compares
optimal progressivity of the tax schedules in the Pareto optimum and SCPE, as measured
by the rate of change of the marginal tax rate as a function of income. It demonstrates
that the optimal progressivity of marginal tax rates at high incomes is barely different in
the two systems, despite the fact that the Pareto optimum fully accounts for the fact that
the top earners are socially completely unproductive whereas the SCPE does not.

Finally, Figure 6 plots welfare as a function of the two-dimensional type space (θ, ϕ).
Clearly, welfare is strictly increasing in θ and independent of ϕ for the traditional workers,
and vice versa for the rent-seekers. The resulting kink occurs along the line of indifferent
workers with θ = ϕµ(E)/E. As one can see the Pareto optimum for a given Ψ(·) does
not represent a Pareto improvement over the SCPE for the same Ψ(·) (although such an
improvement exists by Theorem 5). In contrast, it is such that high earners are made
substantially worse off, but low earners are made better off relative to the SCPE. As the
lower right panel shows, however, most of the skill density is concentrated among the low
skilled in both dimensions in our parametrization, so that the Pareto optimum induces
higher welfare than the SCPE as measured by the criterion Ψ.
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Figure 6: Welfare as a function of (θ, ϕ)

6 Conclusion

Our results indicate that, although the presence of rent-seeking behavior leads to higher
taxes than would otherwise be optimal, it does not necessarily imply that taxes should
be more steeply progressive. This is true even when rent seeking is an activity pursued
primarily, or even exclusively, by the highest earners. One implication is that income
taxation alone is at best an imperfect tool for addressing rent seeking externalities, even
when that rent-seeking is known to be concentrated in an easily identified portion of the
income distribution.

Our model and analysis illustrate how the techniques of optimal income taxation can
be applied to economies with rent-seeking. The techniques we develop are likely to be
fruitful, however, in a broader class of related environments. These would include, for
example, environments with positive externalities, environments in which rent-seeking
imposes externalities on workers who do not themselves engage in rent-seeking, and
environments in which individuals can exert both traditional and rent-seeking effort.

We address rent-seeking because we view it as a qualitatively important phenomenon
which occurs in a broad range of settings. Beyond the traditional notion of rent-seeking
within or through governments and legal systems, we view it as potentially important
in: finance, wherein individuals compete to exploit a potentially limited set of arbitrage
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opportunities; in publishing, where, for example, a textbook author can earn large infra-
marginal rents by producing a text which is only marginally better than an existing one;
in pharmaceuticals, where, for example, patent races can provide large rewards for a
new drug which is developed only incrementally sooner than it otherwise would have
been; and in many other areas. Our paper does not attempt to address the quantitative
importance of rent-seeking, but we view this as an important direction for future research.
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A Proofs for Section 3

A.1 Proof of Lemma 4

We prove the lemma by proving the following two claims:

1. If ϕ
µ(E(t))

E(t) ≥ θ, then dt(t)
dt < 0.

2. If ϕ
µ(E(t))

E(t) < θ, then dt(t)
dt < 1 at points where t = t(t).

Proof. Note that t(t) solves

w
γ

γ−1
E(t)∫ wE(t)

wE(t)
w

γ
γ−1 dFE(t)(w)

=
[

1− t
(γ− 1)(1− t)

]
. (40)

The right-hand-side of (40) is decreasing in t. When ϕ
µ(E(t))

E(t) ≥ θ, wE(t) = ϕ
µ(E(t))

E(t) , so the left-hand side of
(40) is increasing in t and, hence, t(t) is decreasing in t. This establishes the first claim.

Towards establishing the second claim, invert equation (40) to yield:

∫ wE(t)
wE(t)

w
γ

γ−1 dFE(t)(w)

w
γ

γ−1
E(t)

=

[
1− t

1− γ
(γ−1) t

]
. (41)

Note that

∫ wE(t)

wE(t)

w
γ

γ−1 dFE(t)(w) =

{(
µ(E)

E

) γ
γ−1 ∫ ϕ

ϕ=ϕ

∫ ϕ
µ(E)

E

θ=θ
ϕ

γ
γ−1 f (θ, ϕ)dθdϕ +

∫ ϕ

ϕ=ϕ

∫ θ=θ

ϕ
µ(E)

E

θ
γ

γ−1 f (θ, ϕ)dθdϕ

}
,
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so that

d
dt

∫ wE(t)

wE(t)

w
γ

γ−1 dFE(t)(w)

=
(

1
t′(E)

)
γ

γ− 1

(
µ′(E(t))
µ(E(t))

− 1
E

)(
µ(E(t))

E(t)

) γ
γ−1 ∫ ϕ

ϕ=ϕ

∫ ϕ
µ(E(t))

E(t)

θ=θ
ϕ

γ
γ−1 f (θ, ϕ)dθdϕ.

Since
∫ ϕ

ϕ=ϕ

∫ ϕ
µ(E(t))

E(t)
θ=θ θ

γ
γ−1 f (θ, ϕ)dθdϕ ≥ 0:

0 <

d
dt

∫ wE(t)
wE(t)

w
γ

γ−1 dFE(t)(w)∫ wE(t)
wE(t)

w
γ

γ−1 dFE(t)(w)
≤
(
− 1

t′(E)

)
γ

γ− 1

(
1
E
− µ′(E (t))

µ(E(t))

)
. (42)

Next, compute 
d
dt

(
1−t

1− γ
(γ−1) t

)
(

1−t
1− γ

(γ−1) t

)

−1

= (1− t)(γ− 1)
(

1− γ

γ− 1
t
)

. (43)

To show that dt(t)
dt < 1, it suffices to show that the rate of change of the left hand side of (41) is smaller

than the rate of change of the right, or, from (42) and (43), that:

(
− 1

t′(E)

)
γ

γ− 1

(
1
E
−

µ′(E
(
t
)
)

µ(E(t))

)
(1− t)(γ− 1)

(
1− γ

γ− 1
t
)

< 1, (44)

i.e., that the the rate of change of the (log of the) left-hand-side of is smaller than the rate of change of the
(log of the) right-hand-side.

To that end, use equation (4) to observe that

(1− t)
µ(E)

E
=
(

E
k(E)

)γ−1
.

Since k(E) is decreasing in E,

−t′(E)
µ(E)

E
+ (1− t)

(
µ′(E)

E
− µ(E)

E2

)
> (γ− 1)

(
E

k(E)

)γ−1 1
E

=
(γ− 1)

E
(1− t)

µ(E)
E

,

whereby

−t′(E) > (1− t)
(

γ

E
− µ′(E)

µ(E)

)
> (1− t)γ

(
1
E
− µ′(E)

µ(E)

)
,

and (
− 1

t′(E)

)
γ

(
1
E
− µ′(E)

µ(E)

)
(1− t) < 1.

It follows immediately from the fact that t > 0 that:

(
− 1

t′(E)

)
γ

γ− 1

(
1
E
−

µ′(E
(
t
)
)

µ(E(t))

)
(1− t)(γ− 1)

(
1− γ

γ− 1
t
)

<

(
1− γ

γ− 1
t
)

< 1,
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establishing the second claim.

A.2 Proof of Theorem 1
Consider an individual with a given skill type (θ, ϕ). Then the preferred SCPE tax rate for this individual
maximizes her indirect utility

Uθ,ϕ(t) ≡ Vθ,ϕ(t, T(t); E(t)) = t(1− t)
1

γ−1

∫ wE(t)

wE(t)

w
γ

γ−1 dFE(t)(w) +
γ− 1

γ
(1− t)

γ
γ−1
(
wθ,ϕ(E(t))

) γ
γ−1 (45)

where we used equations (4) and (5) to find E(t) and T(t) ≡ T(E(t)). From the point of view of a social
planner who does not recognize the endogeneity of the wage distribution FE(w) (and wE, wE), the “naive”
derivative with respect to t is:

U′
θ,ϕ(t) =

dt(1− t)
1

γ−1

dt

∫ wE

wE

w
γ

γ−1 dFE(w) +
γ− 1

γ

(
d(1− t)

γ
γ−1

dt

) (
wθ,ϕ(E(t))

) γ
γ−1

= (1− t)
1

γ−1

[(
1− 1

γ− 1
t

1− t

) ∫ wE

wE

w
γ

γ−1 dFE(w)− w
γ

γ−1
θ,ϕ

]
, (46)

which is decreasing in wθ,ϕ.11 The upper bar indicates that the wage distribution is kept fixed here, rather
than seen as dependent on t.

The following auxiliary result will be useful.

Lemma 5. Under Assumption 1, Uθ,ϕ(t) is single-peaked in t for any (θ, ϕ) and fixed wage distribution FE(w).

Proof. Whenever t < 1, the sign of U′
θ,ϕ(t) is determined by the sign of the square-bracketed term in (46).

This term is continuous and strictly decreasing in t, is negative as t → 1, and, under Assumption 1, is
positive as t → −∞. U′

θ,ϕ(t) is therefore single peaked at the unique t̃ for which this term is zero.

The actual increase in the indirect utility of an individual with skill (θ, ϕ), taking the endogeneity of
wages into account, is:

U′
θ,ϕ(t) =

dt(1− t)
1

γ−1

dt

∫ wE(t)

wE(t)

w
γ

γ−1 dFE(t)(w) +
γ− 1

γ

d(1− t)
γ

γ−1 wθ,ϕ(E(t))
γ

γ−1

dt

+t(1− t)
1

γ−1
d
∫ wE(t)

wE(t)
w

γ
γ−1 dFE(t)(w)

dt
+

γ− 1
γ

(1− t)
γ

γ−1
dwθ,ϕ(E(t))

γ
γ−1

dt

= U′
θ,ϕ(t) + t(1− t)

1
γ−1

d
∫ wE(t)

wE(t)
w

γ
γ−1 dFE(t)(w)

dt
+

γ− 1
γ

(1− t)
γ

γ−1
dwθ,ϕ(E(t))

γ
γ−1

dt

> U′
θ,ϕ(t). (47)

The inequality follows from the fact that that
∫ wE(t)

wE(t)
w

γ
γ−1 dFE(t)(w) is strictly increasing in t and wθ,ϕ(E(t))

is nondecreasing in t for all (θ, ϕ).

11More precisely, whenever (θ, ϕ) and (θ′, ϕ′) such that wθ,ϕ(E(t)) > wθ′ ,ϕ′(E(t)), then U′
θ,ϕ(t) <

U′
θ′ ,ϕ′(t).
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Fixing any t ≤ tSC, the correspondence Υ(t) lies strictly above t by Lemma 4 (i) and Assumption 1. By
Lemma 5, then Ū′

θ,ϕ(t) ≥ 0. (The perceived peak of any individual’s utility function is Pareto optimal, so t
is to the the left of the peak.) We conclude that U′

θ,ϕ(t) > Ū′
θ,ϕ(t) ≥ 0 for all (θ, ϕ) in Θ×Φ, and therefore

that a marginal tax increase at any t ≤ tSC is Pareto improving, which proves part (ii) of the Lemma.
By Lemma 4 (i), t(t) ≥ t for any t ≤ tSC. So, by Lemma 5 and equation (47), 0 ≤ Ū′

θ,ϕ(t) < U′
θ,ϕ. Hence,

there exists a tax rate t > tSC which the (θ, ϕ) type strictly prefers to all t ≤ tSC, and the tax rate tPO which

maximizes the well-being of the lowest skill type (and thus is Pareto optimal) has tPO
> tSC. (Note that tSC

is well defined, since [tSC, 1] is compact and Uθ,ϕ(t) is continuous in t .) This completes the proof of part (i)
of the Lemma.

A.3 Proof of Theorem 2
For the SCPE, the planner takes the wage distribution at some E as given. Fix any feasible E and let wϕ =
ϕµ(E)/E. Then the SCPE problem is

max
t

∫
Φ

Uϕ(t)dΨ(F(ϕ)),

where
Uϕ(t) = t(1− t)

1
γ−1

∫
Φ

w
γ

γ−1
ϕ dF(ϕ) +

γ− 1
γ

(1− t)
γ

γ−1 w
γ

γ−1
ϕ ,

as above. The solution
tSC

1− tSC = (γ− 1)

1−
∫

Φ ϕ
γ

γ−1 dΨ(F(ϕ))∫
Φ ϕ

γ
γ−1 dF(ϕ)

 (48)

exists, since 1−
∫

Φ ϕ
γ

γ−1 dΨ(F(ϕ))∫
Φ ϕ

γ
γ−1 dF(ϕ)

 ≥

1−
∫

Φ ϕ
γ

γ−1 dF(ϕ)∫
Φ ϕ

γ
γ−1 dF(ϕ)

 > −1,

by Assumption 1. Since tSC is independent of E, the unique SCPE is the feasible linear tax allocation with
t = tSC (and E = E(tSC), T = T(tSC)).

For the full Pareto program, it is more convenient to write the problem as

max
t,T,E

T +
γ− 1

γ
(1− t)

γ
γ−1

(
µ(E)

E

) γ
γ−1 ∫

Φ
ϕ

γ
γ−1 dΨ(F(ϕ))

subject to:

T = t(1− t)
1

γ−1

(
µ(E)

E

) γ
γ−1 ∫

Φ
ϕ

γ
γ−1 dF(ϕ)

and

µ(E) = (1− t)
1

γ−1

(
µ(E)

E

) γ
γ−1 ∫

Φ
ϕ

γ
γ−1 dF(ϕ).

Attaching multipliers κ and η, the first order condition for T implies κ = 1, and the first order condition for
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t can be rearranged to

tPO =

(γ− 1)

1−
∫

Φ ϕ
γ

γ−1 dΨ(F(ϕ))∫
Φ ϕ

γ
γ−1 dF(ϕ)

+ η

(γ− 1)

1−
∫

Φ ϕ
γ

γ−1 dΨ(F(ϕ))∫
Φ ϕ

γ
γ−1 dF(ϕ)

+ 1

.

Moreover, combining the first order conditions for t and E yields η = 1− µ′(EPO)EPO/µ(EPO) > 0, where
EPO is the level of E at the Pareto optimum given Ψ. Solving equation (48) for 1− tSC and comparing 1− tPO

to 1− tSC yields the result.

B Proofs for Section 4

B.1 Proof of Proposition 1
For the following, it will be convenient to rewrite the inner problem for the Pareto optimum as follows:

W(E) ≡ max
Vθ(w),eθ(w),Vϕ(w),eϕ(w)

∫ wE

wE

Vθ(w)ψ(FE(w)) f θ
E(w)dw +

∫ wE

wE

Vϕ(w)ψ(FE(w)) f ϕ
E (w)dw (49)

s.t.

V′
θ(w)− eθ(w)γ

w
= 0, V′

ϕ(w)−
eϕ(w)γ

w
= 0 ∀w (50)

µ(E)−
∫ wE

wE

weϕ(w) f ϕ
E (w)dw = 0 (51)

∫ wE

wE

(weθ(w)− (Vθ(w) + eθ(w)γ/γ)) f θ
E(w)dw

+
∫ wE

wE

(
weϕ(w)−

(
Vϕ(w) + eϕ(w)γ/γ

))
f ϕ
E (w)dw ≥ 0 (52)

eθ(w) = eϕ(w), Vθ(w) = Vϕ(w) ∀w. (53)

Due to the additional no-discrimination constraints (53), it is obvious that problems (16)-(19) and (49)-(53)
are equivalent. We attach multipliers ηθ(w) and ηϕ(w) to the two incentive constraints (50), ξ to (51) and
δe(w), δV(w) to the no discrimination constraints (53).
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The Lagrangian corresponding to (49)-(53) is (after integrating by parts (50))

L =
∫ wE

wE

Vθ(w) (ψ(FE(w))− 1) f θ
E(w)dw +

∫ wE

wE

Vϕ(w) (ψ(FE(w))− 1) f ϕ
E (w)dw

−
∫ wE

wE

Vθ(w)η′θ(w)dw−
∫ wE

wE

eθ(w)γ

w
ηθ(w)dw

−
∫ wE

wE

Vϕ(w)η′ϕ(w)dw−
∫ wE

wE

eϕ(w)γ

w
ηϕ(w)dw

+(1− ξ)
∫ wE

wE

weϕ(w) f ϕ
E (w)dw +

∫ wE

wE

weθ(w) f θ
E(w)dw + ξµ(E)

−
∫ wE

wE

eθ(w)γ/γ f θ
E(w)dw−

∫ wE

wE

eϕ(w)γ/γ f ϕ
E (w)dw

+
∫ wE

wE

δe(w)(eϕ(w)− eθ(w))dw +
∫ wE

wE

δV(w)(Vϕ(w)−Vθ(w))dw. (54)

The first order conditions for Vθ(w) and Vϕ(w) are

(ψ(FE(w))− 1) f θ
E(w) = η′θ(w) + δV(w) (55)

(ψ(FE(w))− 1) f ϕ
E (w) = η′ϕ(w)− δV(w). (56)

Adding them yields
η′θ(w) + η′ϕ(w) = (ψ(FE(w))− 1) fE(w) (57)

and hence
ηθ(w) + ηϕ(w) = Ψ(FE(w))− FE(w). (58)

The first order conditions for eθ(w) and eϕ(w) are

(
w− eθ(w)γ−1

)
f θ
E(w) = γηθ(w)

eθ(w)γ−1

w
+ δe(w) (59)

(
(1− ξ)w− eϕ(w)γ−1

)
f ϕ
E (w) = γηϕ(w)

eϕ(w)γ−1

w
− δe(w) (60)

and adding and using (53) yields

(
w− e(w)γ−1

)
fE(w)− ξw f ϕ

E (w) = γ(ηθ(w) + ηϕ(w))
e(w)γ−1

w
. (61)

Rearranging and substituting (58) gives

e(w)γ−1

w
=

fE(w)− ξ f ϕ
E (w)

fE(w) + γ(Ψ(FE(w))− FE(w))/w
.

Note that, from the worker’s problem

max
e

we− T(we)− eγ

γ
,
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we obtain

1− T′(we(w)) =
e(w)γ−1

w
(62)

and hence the result in (24). (25) immediately follows from the fact that the inner problem for the SCPE is
the same as for the Pareto optimum, only dropping constraint (18).

B.2 Proof of Proposition 2
We prove the result using the following two Lemmas:

Lemma 6. For any given set of Pareto weights, the welfare effect of a marginal change in aggregate rent seeking effort
E can be decomposed as follows:

W ′(E) = ξµ′(E) + ξS + Z, (63)

where

S ≡
∫ wE

wE

we(w)
d f θ

E(w)
dE

dw (64)

and
Z = −1− β(E)

E
((1− ξ)µ(E)− D) (65)

with
D ≡

∫ wE

wE

wV′
ϕ(w)δV(w)dw +

∫ wE

wE

we′ϕ(w)δe(w)dw. (66)

Proof. Using (54),

W ′(E) =
∫ wE

wE

Vθ(w)ψ′(FE(w))
dFE(w)

dE
f θ
E(w)dw +

∫ wE

wE

Vθ(w) (ψ(FE(w))− 1)
d f θ

E(w)
dE

dw

+
∫ wE

wE

Vϕ(w)ψ′(FE(w))
dFE(w)

dE
f ϕ
E (w)dw +

∫ wE

wE

Vϕ(w) (ψ(FE(w))− 1)
d f ϕ

E (w)
dE

dw

+(1− ξ)
∫ wE

wE

weϕ(w)
d f ϕ

E (w)
dE

dw +
∫ wE

wE

weθ(w)
d f θ

E(w)
dE

dw + ξµ′(E)

−
∫ wE

wE

eθ(w)γ/γ
d f θ

E(w)
dE

dw−
∫ wE

wE

eϕ(w)γ/γ
d f ϕ

E (w)
dE

dw + B

with

B ≡ dwE
dE

[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

]
f ϕ
E (wE)

−dwE
dE

[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

]
f ϕ
E (wE)

=
1
E

(
µ′(E)− µ(E)

E

) [[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

]
f ϕ
E (wE)ϕ

−
[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

]
f ϕ
E (wE)ϕ

]
(67)
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since variations in wE and wE only affect the rent seekers. Let us rearrange this as follows:

W ′(E) =
∫ wE

wE

Vθ(w)ψ′(FE(w))
dFE(w)

dE
f θ
E(w)dw +

∫ wE

wE

Vϕ(w)ψ′(FE(w))
dFE(w)

dE
f ϕ
E (w)dw

+
∫ wE

wE

(
Vϕ(w) (ψ(FE(w))− 1) + (1− ξ)weϕ(w)−

eϕ(w)γ

γ

)
d fE(w)

dE
dw

−
∫ wE

wE

(
Vϕ(w) (ψ(FE(w))− 1) + (1− ξ)weϕ(w)−

eϕ(w)γ

γ

)
d f θ

E(w)
dE

dw

+
∫ wE

wE

(
Vθ(w) (ψ(FE(w))− 1) + weθ(w)− eθ(w)γ

γ

)
d f θ

E(w)
dE

dw + ξµ′(E) + B

=
∫ wE

wE

Vϕ(w)ψ′(FE(w))
dFE(w)

dE
fE(w)dw

+
∫ wE

wE

(
Vϕ(w) (ψ(FE(w))− 1) + (1− ξ)weϕ(w)−

eϕ(w)γ

γ

)
d fE(w)

dE
dw

+ξ
∫ wE

wE

weϕ(w)
d f θ

E(w)
dE

dw + ξµ′(E) + B, (68)

where we used the no discrimination constraints (53). We can now integrate the second line by parts and
get

B̃−
∫ wE

wE

(
V′

ϕ(w)(ψ(FE(w))− 1) + Vϕ(w)ψ′(FE(w)) fE(w)
) dFE(w)

dE
dw

−(1− ξ)
∫ wE

wE

eϕ(w)
dFE(w)

dE
dw−

∫ wE

wE

e′ϕ(w)
(

w− eϕ(w)γ−1
) dFE(w)

dE
dw

with

B̃ ≡
[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

] dFE(wE)
dE

−
[
Vϕ(wE) (ψ(FE(wE))− 1) + (1− ξ)wEeϕ(wE)− eϕ(wE)γ/γ

] dFE(wE)
dE

. (69)

Substituting in (68) and cancelling terms yields

W ′(E) = ξµ′(E)− (1− ξ)
∫ wE

wE

eϕ(w)
dFE(w)

dE
dw + ξ

∫ wE

wE

weθ(w)
d f θ

E(w)
dE

dw

−
∫ wE

wE

V′
ϕ(w)(ψ(FE(w))− 1)

dFE(w)
dE

dw

−
∫ wE

wE

e′ϕ(w)
(
(1− ξ)w− eϕ(w)γ−1

) dFE(w)
dE

dw + B + B̃. (70)

Moreover, note that, from (14) and (15),

dFE(w)
dE

=
d

dE

(
E

µ(E)

)
w

∂F (w, wE/µ(E))
∂ϕ

=
d

dE

(
E

µ(E)

)
w
∫ w

θ
f
(

θ, w
E

µ(E)

)
dθ

=
µ(E)

E
d

dE

(
E

µ(E)

)
w f ϕ

E (w) =
1
E

(
1− µ′(E)E

µ(E)

)
w f ϕ

E (w),
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so that B = −B̃ and (70) becomes

W ′(E) = ξµ′(E) + ξ
∫ wE

wE

weθ(w)
d f θ

E(w)
dE

dw− 1
E

(
1− µ′(E)E

µ(E)

) [
(1− ξ)

∫ wE

wE

eϕ(w)w f ϕ
E (w)dw

+
∫ wE

wE

V′
ϕ(w)(ψ(FE(w))− 1)w f ϕ

E (w)dw

+
∫ wE

wE

e′ϕ(w)
(
(1− ξ)w− eϕ(w)γ−1

)
w f ϕ

E (w)dw
]

. (71)

Let us next use the first order conditions for Vϕ(w) and eϕ(w), (56) and (60), to substitute in (71) to obtain

W ′(E) = ξµ′(E) + ξ
∫ wE

wE

weθ(w)
d f θ

E(w)
dE

dw− 1
E

(
1− µ′(E)E

µ(E)

) [
(1− ξ)

∫ wE

wE

eϕ(w)w f ϕ
E (w)dw

+
∫ wE

wE

V′
ϕ(w)w

(
η′ϕ(w)− δV(w)

)
dw

+
∫ wE

wE

we′ϕ(w)

(
γηϕ(w)

eϕ(w)γ−1

w
− δe(w)

)
dw

]
. (72)

Finally, integrating by parts in the third line gives

∫ wE

wE

γe′ϕ(w)eϕ(w)γ−1ηϕ(w)dw = −
∫ wE

wE

eϕ(w)γη′ϕ(w)dw

and substituting in (72) and using the incentive constraints (17) leaves us with

W ′(E) = ξµ′(E) + ξ
∫ wE

wE

we(w)
d f θ

E(w)
dE

dw− 1
E

(
1− µ′(E)E

µ(E)

) [
(1− ξ)

∫ wE

wE

e(w)w f ϕ
E (w)dw

−
∫ wE

wE

wV′(w)δV(w)dw−
∫ wE

wE

we′(w)δe(w)dw
]

= ξ

(
µ(E)

E
+ S

)
− µ(E)

E

(
1− µ′(E)E

µ(E)

)(
1− D

µ(E)

)
, (73)

which completes the proof of the first lemma.

This first Lemma demonstrates that term D in the wage shift effect Z captures the presence of the
no-discrimination constraints (66). The following, second lemma derives a further decomposition of this
no-discrimination effect:

Lemma 7. The no-discrimination effect D in (65) can be further decomposed as follows:

D = D1 + ξD2 (74)

with

D1 ≡
∫ wE

wE

e(w)γ (Ψ(FE(w))− FE(w))
d

dw

(
f ϕ
E (w)

fE(w)

)
dw (75)

and

D2 ≡
∫ wE

wE

w2e′(w)
f ϕ
E (w) f θ

E(w)
fE(w)

dw. (76)
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Proof. Subtract (55) from (56) to get

δV(w) = (ψ(FE(w))− 1)
∆(w)

2
−

η′θ(w)− η′ϕ(w)
2

with ∆(w) ≡ f θ
E(w)− f ϕ

E (w). Similarly,

δe(w) =
(

w− e(w)γ−1
) ∆(w)

2
+ ξ

w f ϕ
E (w)
2

− γ
ηθ(w)− ηϕ(w)

2
e(w)γ−1

w
.

Substituting in the definition of D and using wV′(w) = e(w)γ from (17) yields

D =
∫ wE

wE

e(w)γ (ψ(FE(w))− 1)
∆(w)

2
dw +

∫ wE

wE

we′(w)
(

w− e(w)γ−1
) ∆(w)

2
dw + ξ

∫ wE

wE

w2e′(w)
f ϕ
E (w)

2
dw

−
∫ wE

wE

e(w)γ
η′θ(w)− η′ϕ(w)

2
−
∫ wE

wE

γe′(w)e(w)γ−1 ηθ(w)− ηϕ(w)
2

. (77)

The second line vanishes after integrating the last integral by parts. Next, integrating the first integral in
(77) by parts yields

∫ wE

wE

e(w)γ ∆(w)
2 fE(w)

(ψ(FE(w)− 1) fE(w)dw

= −
∫ wE

wE

(
γe′(w)e(w)γ−1 ∆(w)

2 fE(w)
+ e(w)γ d

dw

(
∆(w)

2 fE(w)

))
(Ψ(FE(w))− FE(w)) dw

and substituting in (77) gives

D = −
∫ wE

wE

e(w)γ d
dw

(
∆(w)

2 fE(w)

)
(Ψ(FE(w))− FE(w)) dw

+
∫ wE

wE

we′(w)
(

w− e(w)γ−1 − γe(w)γ−1 Ψ(FE(w))− FE(w)
w fE(w)

)
∆(w)

2
dw

+ξ
∫ wE

wE

w2e′(w)
f ϕ
E (w)

2
dw.

Note that, by (58) and (61),

w− e(w)γ−1 − γe(w)γ−1 Ψ(FE(w))− FE(w)
w fE(w)

= ξw
f ϕ
E (w)

fE(w)
.
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Hence,

D = −
∫ wE

wE

e(w)γ d
dw

(
∆(w)

2 fE(w)

)
(Ψ(FE(w))− FE(w)) dw

+ξ
∫ wE

wE

w2e′(w)

(
f ϕ
E (w)

fE(w)
∆(w)

2
+

f ϕ
E (w)

2

)
dw

= −
∫ wE

wE

e(w)γ d
dw

(
fE(w)− 2 f ϕ

E (w)
2 fE(w)

)
(Ψ(FE(w))− FE(w)) dw

+ξ
∫ wE

wE

w2e′(w)
f ϕ
E (w) (∆(w) + fE(w))

2 fE(w)
dw

=
∫ wE

wE

e(w)γ d
dw

(
f ϕ
E (w)

fE(w)

)
(Ψ(FE(w))− FE(w)) dw + ξ

∫ wE

wE

w2e′(w)
f ϕ
E (w) f θ

E(w)
fE(w)

dw

= D1 + ξD2,

which completes the proof of the second lemma and thus of Proposition 2.

B.3 Proof of Proposition 3
From Proposition 2,

Z = −1− β(E)
E

((1− ξ)µ(E)− D1 − ξD2) . (78)

Let us decompose

µ(E)(1− ξ) = µ(E)− ξ
∫ wE

wE

we(w)

(
1−

f θ
E(w)

fE(w)

)
f ϕ
E (w)dw− ξ

∫ wE

wE

we(w)
f θ
E(w) f ϕ

E (w)
fE(w)

dw

=
∫ wE

wE

we(w)

(
f ϕ
E (w)− ξ

( f ϕ
E (w))2

fE(w)

)
dw− ξ

∫ wE

wE

we(w)
f θ
E(w) f ϕ

E (w)
fE(w)

dw

=
∫ wE

wE

f ϕ
E (w)

fE(w)
we(w)

(
fE(w)− ξ f ϕ

E (w)
)

dw− ξ
∫ wE

wE

we(w)
f θ
E(w) f ϕ

E (w)
fE(w)

dw

=
∫ wE

wE

f ϕ
E (w)

fE(w)
γ

e(w)γ

w
η(w)dw +

∫ wE

wE

eγ(w) f ϕ
E (w)dw− ξ

∫ wE

wE

we(w)
f θ
E(w) f ϕ

E (w)
fE(w)

dw

≡ G1 + G2 − ξG3

where the last step follows from the first order condition for e(w), equation (61), which can be rearranged
to

eγ(w)
w

[w fE(w) + γη(w)] = we(w)
(

fE(w)− ξ f ϕ
E (w)

)
(79)

with η(w) ≡ ηθ(w) + ηϕ(w) = Ψ(FE(w))− FE(w). Hence, the wage shift effect Z can be rewritten as

Z = −1− β(E)
E

(G1 + G2 − D1 − ξ(D2 + G3)) . (80)
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Moreover, recall the first order condition for V(w), equation (57),

ψ(FE(w)) fE(w)− fE(w) = η′(w) ⇒ ψ(FE(w)) f ϕ
E (w) = f ϕ

E (w) + η′(w)
f ϕ
E (w)

fE(w)

and compute

G2 − D1 + G1 = G2 +
∫ wE

wE

d
dw

[e(w)γη(w)]
f ϕ
E (w)

fE(w)
dw + G1

= G2 +
∫ wE

wE

e(w)γη′(w)
f ϕ
E (w)

fE(w)
dw +

∫ wE

wE

γη(w)
e(w)γ−1

w
(e′(w)w + e(w))

f ϕ
E (w)

fE(w)
dw

=
∫ wE

wE

e(w)γψ(FE(w)) f ϕ
E (w)dw +

∫ wE

wE

η(w)γ(1− T′(y(w)))y′(w)
f ϕ
E (w)

fE(w)
dw

=
∫ wE

wE

wV′(w)ψ(FE(w)) f ϕ
E (w)dw +

∫ wE

wE

η(w)γc′(w)
f ϕ
E (w)

fE(w)
dw ≡ G4 + G5,

where the first line follows from integrating by parts D1, the third line uses the first order condition for
V(w) and the workers’ first order condition (62), and the last line uses the incentive constraints (17) and
c(w) ≡ y(w)− T(y(w)). This leads us to

Z = −1− β(E)
E

(G4 + G5 − ξ(D2 + G3)) . (81)

Solving W ′(E) = 0 for ξ yields

ξ = (1− β(E))
G4 + G5

µ′(E)E + SE + (1− β(E))(D2 + G3)
. (82)

Note that G4 > 0 since V′(w) > 0 from (17). Also, G5 ≥ 0 whenever Ψ(F) is regular so that η(w) ≥ 0
because c′(w) = (1− T′(y(w)))y′(w) ≥ 0 since T′(y(w)) ≤ 1 and y′(w) ≥ 0 for all w. Finally,

D2 + G3 =
∫ wE

wE

(we′(w) + e(w))w
f θ
E(w) f ϕ

E (w)
fE(w)

dw

=
∫ wE

wE

y′(w)w
f θ
E(w) f ϕ

E (w)
fE(w)

dw ≥ 0

since y′(w) ≥ 0. Hence, ξ > 0 for any regular Pareto optimum.

B.4 Proof of Theorem 5
Note first that any regular SCPE has a non-decreasing tax schedule T(y(w)) since, from (25),

1− T′(y(w)) =
(

1 + γ
Ψ(FE(w))− FE(w)

w fE(w)

)−1

≤ 1

if Ψ(F) ≥ F, so that T′(y(w)) ≥ 0 for all w. Then the following auxiliary lemma is useful to prove the
theorem:

Lemma 8. Any Pareto optimum with a non-decreasing tax schedule T(y) has ξ > 0.
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Proof. Consider any Pareto with non-negative marginal tax rates. Then W ′(E) = 0 for some set of Pareto
weights. Suppose, by way of contradiction, that ξ ≤ 0 for the associated inner problem. By the first order
condition for e(w) (61), this implies:

(1− T′(y(w)))γη(w)
fE(w)

≥ wT′(y(w)).

Hence,

G5 =
∫ wE

wE

γη(w)(1− T′(w))
fE(w)

y′(w) f ϕ
E (w)dw

≥
∫ wE

wE

wT′(y(w))y′(w) f ϕ
E (w)dw =

∫ wE

wE

dT(y(w))
dw

w f ϕ
E (w)dw ≥ 0.

Since G4 > 0, this implies G4 + G5 > 0, hence from (81)

W ′(E) = ξµ′(E) + ξS− 1− β(E)
E

[G4 + G4 − ξ(D2 + G3)] < 0,

since D2 + G3 ≥ 0 and we assumed ξ ≤ 0. This contradicts W ′(E) = 0.

Consider any SCPE. It has T′(y(wE)) = T′(y(wE)) = 0 by equation (25). By assumption, it has a non-
decreasing tax-schedule, so, by the above lemma ξ > 0 for the inner part of the Pareto problem for any
Ψ(·). Since f ϕ

E (w) > 0 at wE or wE or both, equation (24) implies T′(y(wE)) > 0 or T′(y(wE)) > 0 or both.
Hence, there are no weights Ψ(·) for which the SCPE solves the Pareto problem.

53


	Introduction
	Model and Approach
	Optimal Linear Taxation
	Feasible Linear Tax Allocations
	Self-Confirming Policy Equilibria and Pareto Optima
	Definitions
	Characterization of the Set of SCPE

	Comparing SCPE and Pareto Optimal Allocations
	Example: A One Sector Rent-Seeking Economy

	Optimal Non-Linear Taxation
	A Decomposition and Definitions
	Pareto Optima with Non-linear Taxes
	Self-Confirming Policy Equilibria with Non-linear Taxes

	Marginal Tax Rate Formulas from the Inner Problems
	Optimal Size of the Rent Seeking Sector from the Outer Problem
	A General Formula
	Understanding the Wage Shift Effect
	Example: A One Sector Rent-Seeking Economy

	Top Marginal Tax Rates
	Inefficiency of SCPE with Non-linear Taxes

	A Numerical Example
	A Parametrization
	Simulation Results

	Conclusion
	Proofs for Section 3
	Proof of Lemma 4
	Proof of Theorem 1
	Proof of Theorem 2

	Proofs for Section 4
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Theorem 5


