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1 Introduction

We simulate optimal income tax schedules in the setup of Mirrlees (1971). Mirrleesian analytic results

are typically complex, and numerical simulations can help to reveal the shape and level of the optimal tax

schedule.

One approach to simulating Mirrleesian optimal tax schedules involves direct numerical maximization of

the planner’s social welfare function under constraints. The algorithm is as follows. A continuous ability

distribution is binned into a discrete approximation. MATLAB, or a similar optimization program, is fed that

discrete ability distribution and maximizes a social welfare function by allocating a consumption-labor bundle

to each ability bin, subject to a feasibility constraint and incentive compatibility constraints. This algorithm

has the virtue of being straightforward, as it recreates the analytical social planner’s problem. However, it

is computationally intensive. Economists are forced to use coarse approximations to the underlying ability

distribution, yielding correspondingly imprecise approximations of the true optimal tax schedule. This is

particularly problematic for simulating optimal income taxes on high earners.

We take a complementary approach. We extend a method recommended to us by Jeffrey Liebman from

experience in the quasi-linear utility case. Our algorithm uses the Saez (2001) first-order condition for

optimal marginal income tax rates and an updating rule to find a fixed-point optimal tax schedule.

The algorithm is as follows. We assume a simple initial tax schedule. Given that initial tax schedule,

agents choose optimal labor supply. Given this labor supply and the initial tax schedule, the social planner’s

first-order condition suggests a new tax schedule. This loop is repeated until a fixed-point optimal tax

schedule is found. The algorithm executes quickly and generates precise optimal tax schedules. We confirm

all of our fixed-point results using the direct optimization approach above.
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2 The Fixed-Point Algorithm

The fixed-point algorithm proceeds according to the following steps. Each is discussed in detail below. The

MATLAB code we use to implement the algorithm is in Section 3.

1. Load into MATLAB a matrix of wages (abilities) and the CDF evaluated at each wage. Use this

matrix to approximate numerically the true wage distribution with a probability mass function.

2. Using a starting marginal tax schedule and lump-sum transfer, calculate optimal labor supply at each

wage. Calculate resulting utility at each wage.

3. Given utility at each wage, use the social planner’s first-order condition to compute an alternative

marginal tax schedule. Use this to update the original marginal tax schedule and lump-sum transfer.

4. Repeat Steps 2 and 3 until the updating is trivially small. The result is the fixed-point tax schedule.

5. Confirm that this is the optimal tax schedule by checking the second-order condition that before-tax

income is non-decreasing in wages.

We have no general results that guarantee convergence to a fixed-point. However, if a fixed-point schedule

is found and the second-order condition is satisfied, it is the optimal schedule. This result relies on the

agent utility function satisfying the single-crossing property (see Salanie 2003).

2.1 Step 1: Discretize the wage distribution

Each simulation requires an exogenous distribution of wages (ability). We use either a lognormal approx-

imation of the U.S. wage distribution or a modification of the lognormal approximation in which we use

a Pareto tail above the 95th percentile wage. We use March CPS data and the lognfit Stata maximum-

likelihood fitting function to parameterize the U.S. wage distribution. The lognormal parameterization for

2007 is (µ, σ) = (2.757, 0.5611), where wages are in dollars per hour. The lognormal parameterization for

1979 is (µ, σ) = (2.721, 0.4880), in 2007 dollars. For the lognormal-Pareto distribution, we append a Pareto

tail with parameter a = 2, taken from Saez (2001), above wage $42.50; the Pareto tail is scaled so that the

resulting lognormal-Pareto distribution is continuous. We assume only ”disabled” agents earn less than

$3.50 per hour. We assume that an atom of disabled agents have wage $0.01 and are five percent of the

population, which according to the Social Security Administration is approximately the percentage of total

workers on public disability insurance. Finally, the distribution is scaled by a constant factor to ensure that

it integrates to 1.

2



Given a continuous wage distribution, we discretize it for use in MATLAB, so we approximate the true

probability density function f (w) with a discrete probability mass function π (w). We discuss in Step 3

the consequences of this approximation. We divide the wage PDF into bins centered from w1 = $0.01 to

wN = $500.51 with bin widths of ∆ = $3.50. This means that our simulation has N = 144 wage bins.

The input MATLAB file (”input data.txt” in our code) is a vector of the N + 1 wages from
(
w1 − ∆

2

)
to(

wN + ∆
2

)
and an associated vector of the true CDF F (w) evaluated at each of those wages. After this is

input to MATLAB, a PMF is generated with N points of support w1, w2, ..., wN , where the mass π (w) on

each wage is equal to F
(
w + ∆

2

)
− F

(
w − ∆

2

)
. Let Π (w) be the CDF associated with PMF π (w). All

subsequent calculations are performed at the wages w1, w2, ..., wN .

2.2 Step 2: Compute optimal labor supply and resulting utility at each wage

This step begins with a marginal tax schedule and a lump-sum transfer. In the first iteration, these are

exogenously specified; we begin ours with a flat tax of 35% at each wage1 and a lump-sum transfer of almost

zero. In all subsequent iterations, the marginal tax schedule and lump-sum transfer are inherited from the

previous iteration.

We now find optimal consumption and labor supply at each wage, given the marginal tax at that wage

and the lump-sum transfer. Each agent has the same additively separable preferences over consumption

and labor such that the single-crossing property holds (see Salanie 2003). In our simulations, the utility

function is:

U (c, l) = u (c) + v (l) =
c1−γ − 1

1− γ
− αlσ

σ

with γ = 1.5, α = 2.55, and σ = 3. Thus utility is constant relative risk aversion in consumption with a

coefficient of relative risk aversion of 1.5 and isoelastic in labor with a Frisch elasticity of labor supply of

0.5. The parameter α is an innocuous scaling factor that affects the level of l; it has no effect on the shape

of optimal tax schedules. In Step 3, we will use U (w) to denote utility of agent w.

Beginning at the lowest wage, MATLAB calculates each agent’s optimal labor supply l by maximizing

utility under the budget constraint c = y− T (y) + [lump-sum transfer], where pre-tax income is y = wl and

tax liability T (y) is a function of income.2 The function T (y) is not well-defined because the full economy’s

incomes are not yet known. As a substitute, we calculate T (y) for the purposes of computing optimal labor

1Note that in the simulations, marginal tax rates are associated with wages even though the planner cannot observe wages.
This is a computational short-cut that is benign because the optimal tax schedule requires that agents reveal their wages.
Incentive compatibility of consumption-income bundles is confirmed at the end of the exercise.

2Some optimal income tax papers define the tax schedule T (y) as inclusive of the lump-sum transfer. This makes no
difference in the analysis.
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supply as follows. Suppose that optimal labor supply has been calculated for agents w1, w2, ..., wi−1 and

MATLAB is now finding optimal labor supply for an agent with wage wi and the given marginal tax rate

T ′i . We construct the income tax schedule T (y) using tax brackets such that marginal tax rate T ′1 applies

on income earned from 0 to y1, marginal tax rate T ′2 applies on income earned from y1 to y2, marginal tax

rate T ′3 applies on income earned from y2 to y3, etc., and marginal tax rate T ′i applies on all income earned

above yi−1. In this way, MATLAB calculates T (yi) for any guess of optimal labor supply li as it searches

for the optimum. This process is repeated until optimal labor supply is found for agents of each wage.

This process is not necessarily without loss of generality because the order in which optimal labor supply is

chosen can matter. However, at the optimal income tax schedule, before-tax income is non-decreasing in

wages, so this algorithm is natural for its purpose. Optimality of the fixed-point tax schedule is confirmed

in Step 5.

Using optimal labor supply at each wage, we compute consumption and utility at each wage.

2.3 Step 3: Use the planner’s FOC to update the tax schedule and transfer

From equation 25 of Saez (2001), the first-order condition of the social planner’s problem is:

T ′ (y (w))

1− T ′ (y (w))
=

(
1 + εu (w)

εc (w)

)(
Uc (w)

wf (w)

)∫ ∞
w

(
1− G′ (U (θ))Uc (θ)

p

)(
1

Uc (θ)

)(
e−

∫ θ
w

l(s)Ucl(s)

sUc(s)
ds

)
f (θ) dθ

where εu (w) is the uncompensated labor supply elasticity at w, εc (w) is the compensated labor supply

elasticity at w, θ and s index wages in the integrals, G (U (θ)) is the social value of U (θ), and p is the Lagrange

multiplier on the planner’s budget constraint. Given a utility function that satisfies the single-crossing

property, this first-order condition and the second-order condition of non-decreasing y (w) are sufficient

conditions for having found the optimal tax schedule.

We use additively separable utility U (c, l) = u (c) − v (l) , so Ucl = 0 for all w. We also use the linear

utilitarian social welfare function
∫∞

0
U (w) f (w) dw so that G (U (w)) = U (w) and G′ (U (w)) = 1 for all

w. We can thus rewrite the first-order condition as:

T ′ (y (w))

1− T ′ (y (w))
=

(
1 + εu (w)

εc (w)

)(
u′ (c (w))

wf (w)

)∫ ∞
w

(
1− u′ (c (θ))

p

)(
1

u′ (c (θ))

)
f (θ) dθ

=

(
1 + εu (w)

εc (w)

)(
u′ (c (w))

wf (w)

)∫ ∞
w

(
1

u′ (c (θ))
− 1

p

)
f (θ) dθ

=

(
1 + εu (w)

εc (w)

)(
u′ (c (w))

wf (w)

)[∫ ∞
w

1

u′ (c (θ))
f (θ) dθ − (1− F (w))

1

p

]
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The Lagrange multiplier p is often referred to as the marginal value of public funds because it measures the

increase in social welfare obtained from an incentive-compatible loosening of the planner’s budget constraint.

It can be computed as follows. Due to the incentive-compatibility constraints, a marginal increase in

public funds is optimally distributed such that each agent’s utility rises by the same amount. The cost in

consumption terms of raising utility marginally for agent θ is 1
u′(c(θ)) , so the cost of an incentive-compatible

marginal increase in average utility is
∫∞

0
1

u′(θ)f (θ) dθ. The value to the planner of a marginal unit of public

funds is the inverse of this cost, so:

p =
1∫∞

0
1

u′(θ)f (θ) dθ

Plugging this into the equation above, we obtain:

T ′ (y (w))

1− T ′ (y (w))
=

(
1 + εu (w)

εc (w)

)(
u′ (c (w))

wf (w)

)[∫ ∞
w

1

u′ (c (θ))
f (θ) dθ − (1− F (w))

∫ ∞
0

1

u′ (θ)
f (θ) dθ

]

We approximate the right-hand side of this equation using our discrete approximation to the underlying

wage distribution. Given the consumption-labor allocations derived in Step 2 by agent maximization under

a given transfer and marginal tax schedule, we derive an alternative marginal tax schedule at each wage

w1, w2, ..., wN by computing the right-hand side of the following equation:

T ′ (y (w))

1− T ′ (y (w))

≈
(

1 + εu (w)

εc (w)

)(
u′ (c (w))

w π(w)
∆

)∫ wN+ ∆
2

w+ ∆
2

1

u′
(
c
(
θ̂
))
π

(
θ̂
)

∆

 dθ − (1−Π (w))

∫ wN+ ∆
2

w1−∆
2

1

u′
(
c
(
θ̂
))
π

(
θ̂
)

∆

 dθ


=

(
1 + εu (w)

εc (w)

)(
u′ (c (w))

w π(w)
∆

) wN∑
wi=w+1

π (wi)

u′ (c (wi))
− (1−Π (wi))

wN∑
wi=w1

π (wi)

u′ (c (wi))


and solving for T ′ (y (w)), where θ̂ is the midpoint of the wage bin into which wage θ falls. This equation

illuminates the sense in which our simulations are approximations of the true optimal tax schedule. First,

we consider only a bounded subset of the true wage distribution. Second, we assume that all agents within

the same wage bin obtain identical utility, which means that the resulting marginal tax schedule is constant

within wage bins. With a wide enough wage range (wN − w1) and a small enough bin width ∆, the

deviations are minor. The approximation is exact as w1 → −∞, wN →∞, and ∆→ 0.

We create a new marginal tax schedule at each wage by averaging the tax schedule from Step 2 with

the alternative tax schedule derived from the social planner’s first-order condition. This will be our new

marginal tax schedule when repeating Step 2. We derive the new lump-sum transfer by finding optimal

labor supply under the new marginal tax schedule and old lump-sum transfer and using that to compute
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pre-transfer government revenue. We set the new lump-sum transfer equal to this pre-transfer government

revenue.3

2.4 Step 4: Arrive at the fixed-point tax schedule

We repeat Steps 2 and 3 until we arrive at a tax schedule that is updated trivially in Step 3 and a government

budget constraint that is sufficiently close to holding with equality. In our simulations, we halt the loop

when no wage’s marginal tax rate is updated by more than 10−6 percent and when government revenue is

within 10−6 units of the transfer.

2.5 Step 5: Confirm optimality of the fixed-point tax schedule

Given a fixed-point tax schedule, all that is left is to confirm the second order condition that y (w) is

non-decreasing. We also double-check that no incentive constraint is violated.

In interpreting the optimal tax schedule, it is important to remember that the optimal marginal tax on

the highest wage wN is always zero in such simulations. This is the ”no distortion at the top” result that

holds in every Mirrleesian economy with bounded wages. If the true wage distribution is unbounded and

takes certain shapes (see the discussion in Lesson 2 of the main paper), this may be misleading.

3 MATLAB Implementation

The following four MATLAB files implement the fixed-point algorithm.4 These files, along with a sample

input file of wages, can be found at http://www.people.fas.harvard.edu/˜yagan in their original formats.

For help in navigating them:

• ”FP MTR sim exec.m” is the execution file.

• Function ”FP find opt l .m” finds optimal labor supply for all agents given a tax schedule and transfer.

It is called by the execution file.

3In our simulations, the social planner has no independent purchases to make, so tax revenue goes entirely to finance the
lump-sum transfer.

4We thank Jan Duras for correcting sign errors in an earlier version of this code that cancelled out and, therefore, did not
affect the results.
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• Function ”FP opt l obj .m” is the objective function called by ”FP find opt l .m”.

• Function ”FP consump .m” calculates a single agent’s consumption given his labor supply, the tax

schedule, the transfer, and a vector of the incomes of agents with lower wages. It is called by

”FP opt l obj .m” and the execution file.

We use this code and the sample input file of wages to produce the optimal marginal tax schedules

displayed in Figure 3. The x-axis of Figure 3 is denominated in annual income whereas the income levels

that result from the optimal tax simulations do not correspond to a specific time interval. Thus to produce

Figure 3, we multiply the income levels that result from each optimal tax simulation by a scaling factor

so that the annual income level of a worker at approximately the 95th percentile of the wage distribution

($38.50 per hour, the midpoint of the 36.76 and 40.26 wage bins in the input file) equals $96,250. This

annual income amount is the annual wage earnings that would be earned working 50 hours per week for 50

weeks per year at $38.50 per hour and is also similar to the 95th percentile of annual W-2 wage earnings in the

United States (see Table A1 of the 2007 NBER Working Paper version of ”Earnings Inequality and Mobility

in the United States: Evidence from Social Security Data since 1937” by Wojciech Kopczuk, Emmanuel

Saez, and Jae Song, published in 2010 in the Quarterly Journal of Economics). The scaling factors are 5,598

for the Lognormal series and 6,219 for the Lognormal-Pareto series. (For Figure 4, the scaling factors are

5,495 for the 1979 series and 5,598 for the 2007 series.)
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FIXED-POINT MIRRLEES SIMULATIONS

%

% EXECUTION FILE

% FP_MTR_sim_exec.m

%

% Mankiw-Weinzierl-Yagan "Optimal Taxation in Theory and Practice"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delete diary_FP_MTR_sim

diary diary_FP_MTR_sim;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SETUP

% SET FORMATS.

format long;

format compact;

warning off;

% LOAD DATA.

clear;

clc;

data = load('input_data.txt');

options=optimset('TolCon',1e-13,'TolFun',1e-13,'TolX',1e-13,'Display','off',

'MaxFunEvals',10000000,'MaxIter',200);

% INPUT WAGES AND CDF EVALUATED AT EACH WAGE. 

cdf_orig = data(:,2);

wage_orig = data(:,1);

clear data

wage_orig_min = min(wage_orig);

wage_orig_max = max(wage_orig);

% SET DISTRIBUTION PARAMETERS. BINS MUST BE EQUAL-SIZED.

num_wages = length(wage_orig)-1;

w = (wage_orig(1:num_wages)+wage_orig(2:num_wages+1)) / 2;

pmf = cdf_orig(2:num_wages+1) - cdf_orig(1:num_wages);

bin_width = w(2) - w(1);

wage_min = min(w);

wage_max = max(w);

% NORMALIZE THE PMF SO THAT ITS MASS EQUALS 1.

pmf = pmf./sum(pmf);

% CREATE CDF.

cdf = zeros(num_wages,1);

for k=1:num_wages

    cdf(k) = sum(pmf(1:k));

end

% CREATE pmf_over_bin_width FOR PLANNER'S FOC.

pmf_over_bin_width = pmf/bin_width;

% SET SIZE OF RELEVANT VECTORS.

y = zeros(num_wages,1);

c = zeros(num_wages,1);

l = zeros(num_wages,1);



tax_paid = zeros(num_wages,1);

IC_check = zeros(num_wages^2,1);

marg_soc_value_above_w = zeros(num_wages,1);

l_iters = zeros(num_wages,1000);

y_iters = zeros(num_wages,1000);

tax_marg_iters = zeros(num_wages,1000);

% SET UTILITY PARAMETERS.

gamma = 1.5;

alpha = 2.55;

sigma = 3;

% SET FMINCON GUESS, BOUNDS, AND LOOP TOLERANCES. tolerance_gov_bc IS IN

% UNITS OF PERCENT OF GNI. tolerance_tax_dev IS IN UNITS OF PERCENT

% DEVIATION OF THE NEW OPTIMAL TAX SCHEDULE AT EACH WAGE FROM THE PREVIOUS 

% ITERATION'S OPTIMAL TAX SCHEDULE.  

guess_for_lowest_wage = .1;

lb = 0;

ub = inf;

tolerance_gov_bc = .00001;

tolerance_tax_dev = .00001;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% FIND THE FIXED-POINT TAX SCHEDULE

% STARTING PARAMETER VALUES.

tax_marg = .35*ones(num_wages,1);

tax_marg_iters(:,1) = tax_marg;

transfer = .000001;

loop = 0;

gov_imbalance_percent_gni = -9999999;

max_percent_opt_tax_deviation = -9999999;

% [LOOP]: WHILE THE GOVERNMENT BUDGET CONSTRAINT DEVIATES TOO MUCH FROM 

% EQUALITY OR THE TAX SCHEDULE HAS NOT SUFFICIENTLY CONVERGED TO A 

% FIXED-POINT, RUN THROUGH THE FOLLOWING LOOP: (1) GIVEN A TAX SCHEDULE AND

% A TRANSFER, FIND EACH WAGE'S OPTIMAL LABOR SUPPLY, (2) USE THE PLANNER'S 

% FOC TO FIND AN ALTERNATIVE TAX SCHEDULE GIVEN THE DERIVED LABOR SUPPLY 

% AND THE TRANSFER, (3) AVERAGE THE TWO SCHEDULES POINT-WISE TO YIELD A NEW

% TAX SCHEDULE, (4) FIND EACH WAGE'S OPTIMAL LABOR SUPPLY UNDER THE NEW TAX 

% SCHEDULE AND SET THE TRANSFER EQUAL TO RESULTING GOVERNMENT REVENUE.

while ( (abs(gov_imbalance_percent_gni)>tolerance_gov_bc) || 

(abs(max_percent_opt_tax_deviation)>tolerance_tax_dev) )

    loop = loop+1

    

    % FIND EACH PERSON'S OPTIMAL LABOR SUPPLY CONDITIONAL ON THE

    % TRANSFER AND THE MTR SCHEDULE.

    [l, y] = FP_find_opt_l_(num_wages, transfer, tax_marg, w, 

guess_for_lowest_wage, lb, ub, options, gamma, alpha, sigma);

    % CALCULATE UTILITY AT EACH WAGE.

    for i=1:num_wages

        c(i) = FP_consump_(l(i), i, w, y, tax_marg, transfer);

    end

    u = (c.^(1-gamma)-1)/(1-gamma) - alpha*l.^sigma/sigma;



    % CALCULATE COMPONENTS OF PLANNER'S FOC.

    elas_comp = 1 ./ (sigma-1+alpha*gamma*l.^sigma.*c.^(gamma-1)); 

    elas_uncomp = (1-alpha*gamma*l.^sigma.*c.^(gamma-1)) ./ (sigma-

1+alpha*gamma*l.^sigma.*c.^(gamma-1));

    u_prime_c = c.^(-gamma);

    total_marg_soc_value = sum(pmf./u_prime_c);

    for k=1:num_wages

        marg_soc_value_above_w(k) = total_marg_soc_value - 

sum(pmf(1:k)./u_prime_c(1:k));

    end

    % CALCULATE ALTERNATIVE MTR SCHEDULE FROM PLANNER'S FOC.

    tax_marg_foc_rhs = (1+elas_uncomp)./elas_comp .* 1./(w.*pmf_over_bin_width) .* 

u_prime_c .* (marg_soc_value_above_w-total_marg_soc_value*(1-cdf));

    tax_marg_old = tax_marg;

    tax_marg_alternative = tax_marg_foc_rhs ./ (1+tax_marg_foc_rhs);

    % ADJUST MTR SCHEDULE HALF-WAY TO THE ALTERNATIVE MTR SCHEDULE, STORE

    % VALUES FOR THIS ITERATION, AND UPDATE VALUE FOR THE WHILE LOOP 

    % ARGUMENT.

    tax_marg = (tax_marg + tax_marg_alternative) ./ 2;

    max_percent_opt_tax_deviation = max(100*(tax_marg_alternative-

tax_marg)./tax_marg);

    tax_marg_iters(:,loop+1) = tax_marg;

    l_iters(:,2*loop-1) = l;

    y_iters(:,2*loop-1) = y;

    % CALCULATE EACH WAGE'S TAX LIABILITY AT THE NEW MTR SCHEDULE. 

    [l, y] = FP_find_opt_l_(num_wages, transfer, tax_marg, w, 

guess_for_lowest_wage, lb, ub, options, gamma, alpha, sigma);

    for i=1:num_wages

        c(i) = FP_consump_(l(i), i, w, y, tax_marg, transfer);

    end

    tax_paid = y + transfer - c;

    l_iters(:,2*loop) = l;

    y_iters(:,2*loop) = y;

    

    % SAVE VALUES.

    gov_rev_iters(loop,1) = sum(tax_paid.*pmf);

    gov_surplus_iters(loop,1) = sum((tax_paid-transfer).*pmf);

    transfer_iters(loop,1) = transfer;

    % SET THE NEW TRANSFER TO EQUAL GOVERNMENT REVENUE. NO SCALING IS

    % NECESSARY BECAUSE THE TRANSFER IS PER-CAPITA. ALSO UPDATE VALUE FOR

    % THE WHILE LOOP ARGUMENT.

    transfer = gov_rev_iters(loop,1);

    gov_imbalance_percent_gni = 100*gov_surplus_iters(loop,1)/sum(y.*pmf);

    

end

% [LOOP END].

% CHECK THAT EACH i PREFERS HIS (c,y) BUNDLE TO ALL OTHER m's BUNDLES. 

% IC_check(i) = {u_i[choosing i's bundle]-u_i[choosing m's bundle]}

% EVERY ELEMENT IN IC_check SHOULD BE NONNEGATIVE. THIS IS USED BELOW.

for i=1:num_wages

    for m=1:num_wages

        IC_check((i-1)*num_wages+m) = ((c(i)^(1-gamma)-1)/(1-gamma)-

alpha*l(i)^sigma/sigma)...



                                    - ((c(m)^(1-gamma)-1)/(1-gamma)-

alpha*(y(m)/w(i))^sigma/sigma);

    end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% DISPLAY RESULTS

% DISPLAY INDICATIONS OF SIMULATION SUCCESS.

disp ' '

disp ' '

disp ' '

disp '<<<<<<<<<<<<<<<<<<<<<<<<  INDICATIONS OF SIMULATION SUCCESS  

>>>>>>>>>>>>>>>>>>>>>>>>'

disp '(1) Is y(w) non-deacreasing?  "1" means yes.'

disp '(2) Max IC violation: [utility from misrepresenting] - [utility from 

revealing type]' 

disp '(3) Min optimal marginal tax rate'

disp '(4) Max optimal marginal tax rate'

disp '(5) Slackness of the government BC: Gov budget imbalance as a percent of GNI'

disp '(6) Max percent deviation of final tax schedule from "optimal" tax schedule'

disp '(7) Transfer'

disp '(8) Total number loops run'

[1, (min(diff(y))>=0);

2, -min(IC_check);

3, min(tax_marg)

4, max(tax_marg)

5, gov_imbalance_percent_gni;

6, max_percent_opt_tax_deviation;

7, transfer;

8, loop]

% PLOT MTR VS. WAGE.

figure

plot(w,tax_marg)

title('Optimal MTR vs. Wage')

ylabel('MTR')

xlabel('Wage')

saveas(gcf,'MTR_v_Wage.fig')

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% SAVE LATEST OUTPUT AND CLOSE DIARY

save FP_MTR_sim.mat;

diary off;



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FIXED-POINT MIRRLEES SIMULATIONS

%

% FUNCTION FOR FINDING OPTIMAL LABOR SUPPLY FOR ALL INDIVIDUALS

% FP_find_opt_l_.m

%

% Mankiw-Weinzierl-Yagan "Optimal Taxation in Theory and Practice"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [l, y] = FP_find_opt_l_(num_wages, transfer, tax_marg, w, 

guess_for_lowest_wage, lb, ub, options, gamma, alpha, sigma);

l = zeros(num_wages,1);

y = zeros(num_wages,1);

guess = guess_for_lowest_wage;

for i=1:num_wages

    l(i) = fmincon( 'FP_opt_l_obj_', guess, [],[],[],[], lb, ub, [], options, i, w,

 y, tax_marg, transfer, gamma, alpha, sigma);

    y(i) = w(i)*l(i);

    guess = l(i);

end

end



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FIXED-POINT MIRRLEES SIMULATIONS

%

% OBJECTIVE FUNCTION FOR FINDING OPTIMAL LABOR SUPPLY

% FP_opt_l_obj_.m

%

% Mankiw-Weinzierl-Yagan "Optimal Taxation in Theory and Practice"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function neg_utility = FP_opt_l_obj_(l_opt_i, i, w, y, tax_marg, transfer, gamma, 

alpha, sigma);

neg_utility = -( ( (FP_consump_(l_opt_i, i, w, y, tax_marg, transfer))^(1-gamma)-1 

)/(1-gamma) - alpha/sigma*l_opt_i^(sigma) );

end



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FIXED-POINT MIRRLEES SIMULATIONS

%

% FUNCTION FOR CALCULATING CONSUMPTION FOR A GIVEN INDIVIDUAL

% FP_consump_.m

%

% Mankiw-Weinzierl-Yagan "Optimal Taxation in Theory and Practice"

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [c_i] = FP_consump_(l_i, i, w, y, tax_marg, transfer);

y(i) = w(i)*l_i;

% FIND THE HIGHEST j SUCH THAT y(j) IS LESS THAN y(i). THIS IS AKIN TO 

% FINDING THE iTH'S PERSON'S TAX BRACKET j, GIVEN i'S INCOME. IN THIS

% EXERCISE, THERE ARE EXACTLY i TAX BRACKETS SINCE WE CALCULATE EACH

% PERSON'S LABOR SUPPLY AS IF HIS ASSIGNED MARGINAL TAX RATE IS THE

% TAX RATE THAT APPLIES TO ALL INCOMES EARNED ABOVE y(i-1), OR ABOVE 0 IF

% i EQUALS 1. NOTE THAT IF y(1:i-1) IS NOT MONOTONIC, THIS ALGORITHM PUTS i

% INTO THE LOWEST POSSIBLE TAX BRACKET.

j = 1;

while ( (j ~= i)  &&  (y(j) < y(i)) )

    j = j+1;

end

% CALCULATE TAX PAID BY THIS iTH PERSON GIVEN HIS TAX BRACKET.

if (j==1)

    tax_paid_i = tax_marg(1)*y(i);

elseif (j==2)

    tax_paid_i = tax_marg(1)*y(1) + tax_marg(2)*(y(i)-y(1));

else

    tax_paid_i = tax_marg(1)*y(1) + sum(tax_marg(2:j-1).*diff(y(1:j-1))) + 

tax_marg(j)*(y(i)-y(j-1));        

end

% CALCULATE RESULTING CONSUMPTION.

c_i = transfer + y(i) - tax_paid_i;

end
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